An S-scheme NH2-MIL-101(Fe)@MCN/Bi2O3 heterojunction photocatalyst for the degradation of tetracycline and production of H2O2

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Zhe Li , Dongcai Shen , Xin Hu , Xiaolong Yang , Yiming Li , Mutai Bao
{"title":"An S-scheme NH2-MIL-101(Fe)@MCN/Bi2O3 heterojunction photocatalyst for the degradation of tetracycline and production of H2O2","authors":"Zhe Li ,&nbsp;Dongcai Shen ,&nbsp;Xin Hu ,&nbsp;Xiaolong Yang ,&nbsp;Yiming Li ,&nbsp;Mutai Bao","doi":"10.1016/j.chemosphere.2023.140234","DOIUrl":null,"url":null,"abstract":"<div><p><span>Effective and durable photocatalysts are essential for the decomposition of persistent contaminants and the generation of hydrogen peroxide. In this study, we successfully constructed an S-type heterojunction by in situ growing Bi</span><sub>2</sub>O<sub>3</sub> nanocrystals and NH<sub>2</sub>-MIL-101(Fe) onto surface-modified g-C<sub>3</sub>N<sub>4</sub><span>. The process of charge transfer in the S-type heterojunction was confirmed using ISI-XPS, DFT calculations<span>, capture experiments, and EPR signals. The combined influence of the heterojunction and MOF demonstrated remarkable photocatalytic performance in the breakdown of tetracycline (TC) and the generation of hydrogen peroxide (H</span></span><sub>2</sub>O<sub>2</sub>). In the enhanced setup (10%–NH<sub>2</sub>–MIL-101(Fe)@MCN/Bi<sub>2</sub>O<sub>3</sub>), full degradation of TC was accomplished within 50 min under visible light exposure. Additionally, a notable H<sub>2</sub>O<sub>2</sub><span> yield of 655.63 μmol/g was attained, all achieved without the necessity of sacrificial agents or supplementary oxygen. Based on the outcomes of the dual functionality, the exceptional performance of the ternary composite material can be ascribed to the collaborative influence of the heterojunction and MOF. This collaborative effect expands the light absorption range in the visible region, suppresses the recombination of electron-hole pairs, and enhances the photocatalytic redox ability. The system demonstrates significant potential in the efficient in situ production of H</span><sub>2</sub>O<sub>2</sub> and removal of recalcitrant organic pollutants in pure water.</p></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"343 ","pages":"Article 140234"},"PeriodicalIF":8.1000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653523025043","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Effective and durable photocatalysts are essential for the decomposition of persistent contaminants and the generation of hydrogen peroxide. In this study, we successfully constructed an S-type heterojunction by in situ growing Bi2O3 nanocrystals and NH2-MIL-101(Fe) onto surface-modified g-C3N4. The process of charge transfer in the S-type heterojunction was confirmed using ISI-XPS, DFT calculations, capture experiments, and EPR signals. The combined influence of the heterojunction and MOF demonstrated remarkable photocatalytic performance in the breakdown of tetracycline (TC) and the generation of hydrogen peroxide (H2O2). In the enhanced setup (10%–NH2–MIL-101(Fe)@MCN/Bi2O3), full degradation of TC was accomplished within 50 min under visible light exposure. Additionally, a notable H2O2 yield of 655.63 μmol/g was attained, all achieved without the necessity of sacrificial agents or supplementary oxygen. Based on the outcomes of the dual functionality, the exceptional performance of the ternary composite material can be ascribed to the collaborative influence of the heterojunction and MOF. This collaborative effect expands the light absorption range in the visible region, suppresses the recombination of electron-hole pairs, and enhances the photocatalytic redox ability. The system demonstrates significant potential in the efficient in situ production of H2O2 and removal of recalcitrant organic pollutants in pure water.

Abstract Image

用于降解四环素和产生H2O2的S方案NH2-MIL-101(Fe)@MCN/Bi2O3异质结光催化剂。
有效和耐用的光催化剂对于分解持久性污染物和产生过氧化氢至关重要。在本研究中,我们通过在表面改性的g-C3N4上原位生长Bi2O3纳米晶体和NH2-MIL-101(Fe)成功构建了S型异质结。使用ISI-XPS、DFT计算、捕获实验和EPR信号证实了S型异质结中的电荷转移过程。异质结和MOF的共同影响在四环素(TC)的分解和过氧化氢(H2O2)的产生方面表现出显著的光催化性能。在增强设置(10%-NH2-MIL-101(Fe)@MCN/Bi2O3)中,TC在可见光照射下在50分钟内完全降解。此外,在不需要牺牲剂或补充氧气的情况下,获得了655.63μmol/g的显著H2O2产量。基于双功能性的结果,三元复合材料的优异性能可归因于异质结和MOF的协同影响。这种协同效应扩大了可见光区域的光吸收范围,抑制了电子-空穴对的复合,并增强了光催化氧化还原能力。该系统在高效原位生产H2O2和去除纯水中难降解的有机污染物方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信