Differential diagnosis between dilated cardiomyopathy and ischemic cardiomyopathy based on variational mode decomposition and high order spectra analysis.
{"title":"Differential diagnosis between dilated cardiomyopathy and ischemic cardiomyopathy based on variational mode decomposition and high order spectra analysis.","authors":"Yuduan Han, Yunyue Zhao, Zhuochen Lin, Zichao Liang, Siyang Chen, Jinxin Zhang","doi":"10.1007/s13755-023-00244-9","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical manifestations of ischemic cardiomyopathy (ICM) bear resemblance to dilated cardiomyopathy (DCM). The definitive diagnosis of DCM necessitates the identification of invasive, costly, and contraindicated coronary angiography. Many diagnostic studies of cardiovascular disease have tried modal decomposition based on electrocardiogram (ECG) signals. However, these studies ignored the connection between modes and other fields, thus limiting the interpretability of modes to ECG signals and the classification performance of models. This study proposes a classification algorithm based on variational mode decomposition (VMD) and high order spectra, which decomposes the preprocessed ECG signal and extracts its first five modes obtained through VMD. After that, these modes are estimated for their corresponding bispectrums, and the feature vector is composed of fifteen features including bispectral, frequency, and nonlinear features based on this. Finally, a dataset containing 75 subjects (38 DCM, 37 ICM) is classified and compared using random forest (RF), decision tree, support vector machine, and K-nearest neighbor. The results show that, in comparison to previous approaches, the technique proposed provides a better categorization for DCM and ICM of ECG signals, which delivers 98.21% classification accuracy, 98.22% sensitivity, and 98.19% specificity. And mode 3 always has the best performance among single mode. The proposed computerized framework significantly improves automatic diagnostic performance, which can help relieve the working pressure on doctors, possible economic burden and health threaten.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"43"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00244-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The clinical manifestations of ischemic cardiomyopathy (ICM) bear resemblance to dilated cardiomyopathy (DCM). The definitive diagnosis of DCM necessitates the identification of invasive, costly, and contraindicated coronary angiography. Many diagnostic studies of cardiovascular disease have tried modal decomposition based on electrocardiogram (ECG) signals. However, these studies ignored the connection between modes and other fields, thus limiting the interpretability of modes to ECG signals and the classification performance of models. This study proposes a classification algorithm based on variational mode decomposition (VMD) and high order spectra, which decomposes the preprocessed ECG signal and extracts its first five modes obtained through VMD. After that, these modes are estimated for their corresponding bispectrums, and the feature vector is composed of fifteen features including bispectral, frequency, and nonlinear features based on this. Finally, a dataset containing 75 subjects (38 DCM, 37 ICM) is classified and compared using random forest (RF), decision tree, support vector machine, and K-nearest neighbor. The results show that, in comparison to previous approaches, the technique proposed provides a better categorization for DCM and ICM of ECG signals, which delivers 98.21% classification accuracy, 98.22% sensitivity, and 98.19% specificity. And mode 3 always has the best performance among single mode. The proposed computerized framework significantly improves automatic diagnostic performance, which can help relieve the working pressure on doctors, possible economic burden and health threaten.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.