Rahul Goel, Teresa Tse, Lia J Smith, Andrew Floren, Bruce Naylor, M Wright Williams, Ramiro Salas, Albert S Rizzo, David Ress
{"title":"Framework for Accurate Classification of Self-Reported Stress From Multisession Functional MRI Data of Veterans With Posttraumatic Stress.","authors":"Rahul Goel, Teresa Tse, Lia J Smith, Andrew Floren, Bruce Naylor, M Wright Williams, Ramiro Salas, Albert S Rizzo, David Ress","doi":"10.1177/24705470231203655","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Posttraumatic stress disorder (PTSD) is a significant burden among combat Veterans returning from the wars in Iraq and Afghanistan. While empirically supported treatments have demonstrated reductions in PTSD symptomatology, there remains a need to improve treatment effectiveness. Functional magnetic resonance imaging (fMRI) neurofeedback has emerged as a possible treatment to ameliorate PTSD symptom severity. Virtual reality (VR) approaches have also shown promise in increasing treatment compliance and outcomes. To facilitate fMRI neurofeedback-associated therapies, it would be advantageous to accurately classify internal brain stress levels while Veterans are exposed to trauma-associated VR imagery. <b>Methods:</b> Across 2 sessions, we used fMRI to collect neural responses to trauma-associated VR-like stimuli among male combat Veterans with PTSD symptoms (N = 8). Veterans reported their self-perceived stress level on a scale from 1 to 8 every 15 s throughout the fMRI sessions. In our proposed framework, we precisely sample the fMRI data on cortical gray matter, blurring the data along the gray-matter manifold to reduce noise and dimensionality while preserving maximum neural information. Then, we independently applied 3 machine learning (ML) algorithms to this fMRI data collected across 2 sessions, separately for each Veteran, to build individualized ML models that predicted their internal brain states (self-reported stress responses). <b>Results:</b> We accurately classified the 8-class self-reported stress responses with a mean (± standard error) root mean square error of 0.6 (± 0.1) across all Veterans using the best ML approach. <b>Conclusions:</b> The findings demonstrate the predictive ability of ML algorithms applied to whole-brain cortical fMRI data collected during individual Veteran sessions. The framework we have developed to preprocess whole-brain cortical fMRI data and train ML models across sessions would provide a valuable tool to enable individualized real-time fMRI neurofeedback during VR-like exposure therapy for PTSD.</p>","PeriodicalId":52315,"journal":{"name":"Chronic Stress","volume":"7 ","pages":"24705470231203655"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronic Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/24705470231203655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Posttraumatic stress disorder (PTSD) is a significant burden among combat Veterans returning from the wars in Iraq and Afghanistan. While empirically supported treatments have demonstrated reductions in PTSD symptomatology, there remains a need to improve treatment effectiveness. Functional magnetic resonance imaging (fMRI) neurofeedback has emerged as a possible treatment to ameliorate PTSD symptom severity. Virtual reality (VR) approaches have also shown promise in increasing treatment compliance and outcomes. To facilitate fMRI neurofeedback-associated therapies, it would be advantageous to accurately classify internal brain stress levels while Veterans are exposed to trauma-associated VR imagery. Methods: Across 2 sessions, we used fMRI to collect neural responses to trauma-associated VR-like stimuli among male combat Veterans with PTSD symptoms (N = 8). Veterans reported their self-perceived stress level on a scale from 1 to 8 every 15 s throughout the fMRI sessions. In our proposed framework, we precisely sample the fMRI data on cortical gray matter, blurring the data along the gray-matter manifold to reduce noise and dimensionality while preserving maximum neural information. Then, we independently applied 3 machine learning (ML) algorithms to this fMRI data collected across 2 sessions, separately for each Veteran, to build individualized ML models that predicted their internal brain states (self-reported stress responses). Results: We accurately classified the 8-class self-reported stress responses with a mean (± standard error) root mean square error of 0.6 (± 0.1) across all Veterans using the best ML approach. Conclusions: The findings demonstrate the predictive ability of ML algorithms applied to whole-brain cortical fMRI data collected during individual Veteran sessions. The framework we have developed to preprocess whole-brain cortical fMRI data and train ML models across sessions would provide a valuable tool to enable individualized real-time fMRI neurofeedback during VR-like exposure therapy for PTSD.