Jennifer Reimers, Ronna C Turner, Jorge N Tendeiro, Wen-Juo Lo, Elizabeth Keiffer
{"title":"The Effects of Aberrant Responding on Model-Fit Assuming Different Underlying Response Processes.","authors":"Jennifer Reimers, Ronna C Turner, Jorge N Tendeiro, Wen-Juo Lo, Elizabeth Keiffer","doi":"10.1177/01466216231201987","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant responding on tests and surveys has been shown to affect the psychometric properties of scales and the statistical analyses from the use of those scales in cumulative model contexts. This study extends prior research by comparing the effects of four types of aberrant responding on model fit in both cumulative and ideal point model contexts using graded partial credit (GPCM) and generalized graded unfolding (GGUM) models. When fitting models to data, model misfit can be both a function of misspecification and aberrant responding. Results demonstrate how varying levels of aberrant data can severely impact model fit for both cumulative and ideal point data. Specifically, longstring responses have a stronger impact on dimensionality for both ideal point and cumulative data, while random responding tends to have the most negative impact on data model fit according to information criteria (AIC, BIC). The results also indicate that ideal point data models such as GGUM may be able to fit cumulative data as well as the cumulative model itself (GPCM), whereas cumulative data models may not provide sufficient model fit for data simulated using an ideal point model.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":"47 5-6","pages":"420-437"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216231201987","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aberrant responding on tests and surveys has been shown to affect the psychometric properties of scales and the statistical analyses from the use of those scales in cumulative model contexts. This study extends prior research by comparing the effects of four types of aberrant responding on model fit in both cumulative and ideal point model contexts using graded partial credit (GPCM) and generalized graded unfolding (GGUM) models. When fitting models to data, model misfit can be both a function of misspecification and aberrant responding. Results demonstrate how varying levels of aberrant data can severely impact model fit for both cumulative and ideal point data. Specifically, longstring responses have a stronger impact on dimensionality for both ideal point and cumulative data, while random responding tends to have the most negative impact on data model fit according to information criteria (AIC, BIC). The results also indicate that ideal point data models such as GGUM may be able to fit cumulative data as well as the cumulative model itself (GPCM), whereas cumulative data models may not provide sufficient model fit for data simulated using an ideal point model.
期刊介绍:
Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.