{"title":"Aging-related histone modification changes in brain function","authors":"Yanwen Ding, Chengxi Liu, Yi Zhang","doi":"10.1002/ibra.12106","DOIUrl":null,"url":null,"abstract":"<p>Aging can be defined as a decline of physiological function that is more difficult to reverse, characterized by the loss of the physiological integrity of tissues, organs, and cells of an organism over time. Normal aging is associated with structural and functional changes in the brain, involving neuronal apoptosis, synaptic structure, neurotransmission, and metabolism alterations, leading to impairment in sleep, cognitive functions, memory, learning, and motor and sensory systems. Histone modification is a significant aging-related epigenetic change that influences synaptic and mitochondrial function and immune and stress responses in the brain. This review discusses the changes in histone modifications that occur during brain aging, specifically methylation and acetylation, and the associated changes in gene transcription and protein expression. We observed that genes related to synaptic and mitochondrial function are downregulated in the aging brain, while genes related to immune response and inflammatory functions are upregulated.</p>","PeriodicalId":94030,"journal":{"name":"Ibrain","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ibra.12106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibrain","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ibra.12106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aging can be defined as a decline of physiological function that is more difficult to reverse, characterized by the loss of the physiological integrity of tissues, organs, and cells of an organism over time. Normal aging is associated with structural and functional changes in the brain, involving neuronal apoptosis, synaptic structure, neurotransmission, and metabolism alterations, leading to impairment in sleep, cognitive functions, memory, learning, and motor and sensory systems. Histone modification is a significant aging-related epigenetic change that influences synaptic and mitochondrial function and immune and stress responses in the brain. This review discusses the changes in histone modifications that occur during brain aging, specifically methylation and acetylation, and the associated changes in gene transcription and protein expression. We observed that genes related to synaptic and mitochondrial function are downregulated in the aging brain, while genes related to immune response and inflammatory functions are upregulated.