{"title":"Vection induced by a pair of patches of synchronized visual motion stimuli covering total field of views as small as 10 square-degrees.","authors":"Coskun Joe Dizmen, Richard H Y So","doi":"10.1177/20416695231201463","DOIUrl":null,"url":null,"abstract":"<p><p>Vection (illusion of self-motion) is known to be induced by watching large field-of-view (FOV) moving scenes. In our study, we investigated vection induced by small FOV stimuli. Three experiments were conducted in 45 sessions to analyze vection provoked by moving scenes covering total FOVs as small as 10 square-degrees. Results indicated that 88% of the participants reported vection while watching two small patches of moving dots (1° horizontal by 5° vertical, each) placed on the left and right sides of the observers. This is less than a quarter of the total visual area of two Apple Watches viewed at a distance of 40 cm. Occlusion of the visual field between the two display patches significantly increased the levels of rated vection. Similarly, increasing the speed of the moving dots of the two display patches from about 5 to 25 °/sec increased the levels of rated vection significantly. The location of the two patches in the horizontal visual field did not affect the vection perception significantly. When the two straight stripes of dots were moving in opposite directions, participants perceived circular vection. The observers connected the two stimuli in their minds and perceived them as parts of a single occluded background. The findings of this study are relevant to the design of mobile devices (e.g., smartphones) and wearable technology (e.g., smart watches) with small display areas.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/20416695231201463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Vection (illusion of self-motion) is known to be induced by watching large field-of-view (FOV) moving scenes. In our study, we investigated vection induced by small FOV stimuli. Three experiments were conducted in 45 sessions to analyze vection provoked by moving scenes covering total FOVs as small as 10 square-degrees. Results indicated that 88% of the participants reported vection while watching two small patches of moving dots (1° horizontal by 5° vertical, each) placed on the left and right sides of the observers. This is less than a quarter of the total visual area of two Apple Watches viewed at a distance of 40 cm. Occlusion of the visual field between the two display patches significantly increased the levels of rated vection. Similarly, increasing the speed of the moving dots of the two display patches from about 5 to 25 °/sec increased the levels of rated vection significantly. The location of the two patches in the horizontal visual field did not affect the vection perception significantly. When the two straight stripes of dots were moving in opposite directions, participants perceived circular vection. The observers connected the two stimuli in their minds and perceived them as parts of a single occluded background. The findings of this study are relevant to the design of mobile devices (e.g., smartphones) and wearable technology (e.g., smart watches) with small display areas.