Haijie Ji, Xueqiong Yang, Hang Zhou, Feiyun Cui, Qin Zhou
{"title":"Rapid Evaluation of Antibacterial Carbohydrates on a Microfluidic Chip Integrated with the Impedimetric Neoglycoprotein Biosensor.","authors":"Haijie Ji, Xueqiong Yang, Hang Zhou, Feiyun Cui, Qin Zhou","doi":"10.3390/bios13090887","DOIUrl":null,"url":null,"abstract":"<p><p>The colonization of some bacteria to their host cell is mediated by selective adhesion between adhesin and glycan. The evaluation of antiadhesive carbohydrates in vitro has great significance in discovering new antibacterial drugs. In this paper, a microfluidic chip integrated with impedimetric neoglycoprotein biosensors was developed to evaluate the antibacterial effect of carbohydrates. Mannosylated bovine serum albumin (Man-BSA) was taken as the neoglycoprotein and immobilized on the microelectrode-modified gold nanoparticles (Au NPs) to form a bionic glycoprotein nanosensing surface (Man-BSA/Au NPs). <i>Salmonella typhimurium</i> (<i>S. typhimurium</i>) was selected as a bacteria model owing to its selective adhesion to the mannose. Electrochemical impedance spectroscopy (EIS) was used to characterize the adhesion capacity of <i>S. typhimurium</i> to the Man-BSA/Au NPs and evaluate the antiadhesive efficacy of nine different carbohydrates. It was illustrated that the 4-methoxyphenyl-α-D-pyran mannoside (Phenyl-Man) and mannan peptide (Mannatide) showed excellent antiadhesive efficacy, with IC<sub>50</sub> values of 0.086 mM and 0.094 mM, respectively. The microfluidic device developed in this study can be tested in multiple channels. Compared with traditional methods for evaluating the antibacterial drug in vitro, it has the advantages of being fast, convenient, and cost-effective.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios13090887","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The colonization of some bacteria to their host cell is mediated by selective adhesion between adhesin and glycan. The evaluation of antiadhesive carbohydrates in vitro has great significance in discovering new antibacterial drugs. In this paper, a microfluidic chip integrated with impedimetric neoglycoprotein biosensors was developed to evaluate the antibacterial effect of carbohydrates. Mannosylated bovine serum albumin (Man-BSA) was taken as the neoglycoprotein and immobilized on the microelectrode-modified gold nanoparticles (Au NPs) to form a bionic glycoprotein nanosensing surface (Man-BSA/Au NPs). Salmonella typhimurium (S. typhimurium) was selected as a bacteria model owing to its selective adhesion to the mannose. Electrochemical impedance spectroscopy (EIS) was used to characterize the adhesion capacity of S. typhimurium to the Man-BSA/Au NPs and evaluate the antiadhesive efficacy of nine different carbohydrates. It was illustrated that the 4-methoxyphenyl-α-D-pyran mannoside (Phenyl-Man) and mannan peptide (Mannatide) showed excellent antiadhesive efficacy, with IC50 values of 0.086 mM and 0.094 mM, respectively. The microfluidic device developed in this study can be tested in multiple channels. Compared with traditional methods for evaluating the antibacterial drug in vitro, it has the advantages of being fast, convenient, and cost-effective.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.