Reduced nitrogen fertilization from pre-flowering to pre-veraison alters phenolic profiles of Vitis vinifera L. Cv. Cabernet Gernischt wine of Yantai, China.
Jianqiang Song, Ang Zhang, Fei Gao, Mingqing Li, Xianhua Zhao, Jie Zhang, Genjie Wang, Yuping Hou, Shiwei Cheng, Huige Qu, Shili Ruan, Jiming Li
{"title":"Reduced nitrogen fertilization from pre-flowering to pre-veraison alters phenolic profiles of Vitis vinifera L. Cv. Cabernet Gernischt wine of Yantai, China.","authors":"Jianqiang Song, Ang Zhang, Fei Gao, Mingqing Li, Xianhua Zhao, Jie Zhang, Genjie Wang, Yuping Hou, Shiwei Cheng, Huige Qu, Shili Ruan, Jiming Li","doi":"10.1016/j.foodres.2023.113339","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen (N) fertilization is important for grape growth and wine quality. Unreasonable N fertilizer application affects wine growth and has a negative impact on wine quality. Therefore, it is essential to address the mismatch between N application and wine composition. To regulate vine growth and improve grape and wine quality, Cabernet Gernischt (Vitis vinifera L.) grapevines were subjected to lower levels of N, compared to normal N supply treatments, during the grape growing seasons of 2019 and 2020 in the wine region of Yantai, China. The effects of reduced N application from pre-boom to pre-veraison on vine growth, yield and composition of grapes, and dry red wine anthocyanin and non-anthocyanin phenolic compound content were studied. We found that reduced N application significantly decreased dormant shoot fresh mass and yield. However, the effect of N application on fruit ripening depended on the season. Nitrogen-reduction treatment significantly improved wine phenolic parameters, including total phenolics, tannins, and anthocyanins, and enhanced most of the individual anthocyanins and some non-anthocyanin phenolics, especially stilbenes, including piceatannol, trans-resveratrol, and polydatin, regardless of the season. Overall, our findings highlight the importance of reducing N application during the grape growing season in order to modify the wine phenolic profiles.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"173 Pt 1","pages":"113339"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2023.113339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen (N) fertilization is important for grape growth and wine quality. Unreasonable N fertilizer application affects wine growth and has a negative impact on wine quality. Therefore, it is essential to address the mismatch between N application and wine composition. To regulate vine growth and improve grape and wine quality, Cabernet Gernischt (Vitis vinifera L.) grapevines were subjected to lower levels of N, compared to normal N supply treatments, during the grape growing seasons of 2019 and 2020 in the wine region of Yantai, China. The effects of reduced N application from pre-boom to pre-veraison on vine growth, yield and composition of grapes, and dry red wine anthocyanin and non-anthocyanin phenolic compound content were studied. We found that reduced N application significantly decreased dormant shoot fresh mass and yield. However, the effect of N application on fruit ripening depended on the season. Nitrogen-reduction treatment significantly improved wine phenolic parameters, including total phenolics, tannins, and anthocyanins, and enhanced most of the individual anthocyanins and some non-anthocyanin phenolics, especially stilbenes, including piceatannol, trans-resveratrol, and polydatin, regardless of the season. Overall, our findings highlight the importance of reducing N application during the grape growing season in order to modify the wine phenolic profiles.