Lan Ma , Xueqing Zhang , Chenxi Li , Xiaoyu Ma , Xuan Zhao , Xueru Zhao , Ping Zhang , Xudong Zhu
{"title":"A U2 snRNP-specific protein, U2A′, is involved in stress response and drug resistance in Cryptococcus deneoformans","authors":"Lan Ma , Xueqing Zhang , Chenxi Li , Xiaoyu Ma , Xuan Zhao , Xueru Zhao , Ping Zhang , Xudong Zhu","doi":"10.1016/j.biochi.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>The spliceosome<span><span>, a large complex containing five conserved small ribonucleoprotein particles (snRNPs) U1, U2, U4, U5 and U6, plays important roles in precursor messenger </span>RNA splicing. However, the function and mechanism of the spliceosomal snRNPs have not been thoroughly studied in the pathogenic yeast </span></span><span><em>Cryptococcus</em><em> deneoformans</em></span>. In this study, we identified a U2A′ homologous protein as a component of the cryptococcal U2 snRNP, which was encoded by the <em>LEA1</em> gene. Using the “suicide” CRISPR-Cas9 tool, we deleted the <em>LEA1</em> gene in <em>C. deneoformans</em> JEC21 strain and obtained the disruption mutant <em>lea1</em><span>Δ. The mutant showed a hypersensitivity to 0.03 % sodium dodecyl sulfate<span>, as well as disordered chitin distribution in cell wall observed with Calcofluor White staining, which collectively illustrated the function of U2A′ in maintenance of cell wall integrity. Further examination showed that </span></span><em>lea1</em><span>Δ displayed a decreased tolerance to lower or elevated temperatures, osmotic pressure<span> and oxidative stress. The </span></span><em>lea1</em>Δ still exhibited susceptibility to geneticin and 5-flucytosine, and increased resistance to ketoconazole. Even, the mutant had a reduced capsule, and the virulence of <em>lea1</em>Δ in the <span><em>Galleria mellonella</em></span> model was decreased. Our results indicate that the U2A′-mediated RNA-processing has a particular role in the processing of gene products involved in response to stresses and virulence.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"220 ","pages":"Pages 179-187"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908423002699","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The spliceosome, a large complex containing five conserved small ribonucleoprotein particles (snRNPs) U1, U2, U4, U5 and U6, plays important roles in precursor messenger RNA splicing. However, the function and mechanism of the spliceosomal snRNPs have not been thoroughly studied in the pathogenic yeast Cryptococcus deneoformans. In this study, we identified a U2A′ homologous protein as a component of the cryptococcal U2 snRNP, which was encoded by the LEA1 gene. Using the “suicide” CRISPR-Cas9 tool, we deleted the LEA1 gene in C. deneoformans JEC21 strain and obtained the disruption mutant lea1Δ. The mutant showed a hypersensitivity to 0.03 % sodium dodecyl sulfate, as well as disordered chitin distribution in cell wall observed with Calcofluor White staining, which collectively illustrated the function of U2A′ in maintenance of cell wall integrity. Further examination showed that lea1Δ displayed a decreased tolerance to lower or elevated temperatures, osmotic pressure and oxidative stress. The lea1Δ still exhibited susceptibility to geneticin and 5-flucytosine, and increased resistance to ketoconazole. Even, the mutant had a reduced capsule, and the virulence of lea1Δ in the Galleria mellonella model was decreased. Our results indicate that the U2A′-mediated RNA-processing has a particular role in the processing of gene products involved in response to stresses and virulence.
期刊介绍:
Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English.
Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.