Elucidating a Complex Mechanism.

IF 5.1 Q2 CELL BIOLOGY
Function (Oxford, England) Pub Date : 2023-09-29 eCollection Date: 2023-01-01 DOI:10.1093/function/zqad051
Victor Wray
{"title":"Elucidating a Complex Mechanism.","authors":"Victor Wray","doi":"10.1093/function/zqad051","DOIUrl":null,"url":null,"abstract":"ur understanding of the complex dynamic system dri v en by onformational change during adenosine triphosphate (ATP) ydr ol ysis by F 1 -ATPase is of fundamental biochemical imporance. 1 , 2 Cr yo-electr on micr oscopy (Cr yo-EM) studies 3 −5 have ontributed v alua b le structural information on how the F 1 TPase functions, although, in themselves, these have not led o a definiti v e mechanism. The F 1 -ATPase is a multi-subunit sysem containing 3 β-catalytic sites that have been studied by biohysical single-molecule experiments based on direct visualizaion of the rotation of its central γ -subunit. 6 However, it is difcult to esta b lish which interconverting site or sites contribute nergy for the observ ed r otation, gi v en that a site can perform he elementary chemical steps of ATP binding, ATP hydr ol ytic ond cleav a ge, and pr oduct (Pi and adenosine diphosphate, ADP) elease. 7 Originally, the molecular mechanism of ATP syntheis/hydr ol ysis w as studied using classical biochemical pproaches that provided a wealth of fundamental data. A i-site Boyer’s binding change mechanism of ATP syntheis/hydr ol ysis (Nobel Prize for Chemistry, 1997) was postulated etween 1973 and 1993 based on biochemical unisite/multisite atalysis and oxygen exchange experiments. 8 An alternati v e ri-site Nath’s torsional mechanism of energy transduction nd ATP synthesis/hydr ol ysis w as first pr oposed in 1999 and ev eloped ov er the next 25 yr using a nov el m ultidisciplinar y pproac h, 9 whic h inte gr ated physics, c hemistry, bioc hemistry, nd engineering. The dir ect measur ements by Senior and oworkers of the fluorescence quenching of tryptophan probes","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":"4 6","pages":"zqad051"},"PeriodicalIF":5.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548849/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqad051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

ur understanding of the complex dynamic system dri v en by onformational change during adenosine triphosphate (ATP) ydr ol ysis by F 1 -ATPase is of fundamental biochemical imporance. 1 , 2 Cr yo-electr on micr oscopy (Cr yo-EM) studies 3 −5 have ontributed v alua b le structural information on how the F 1 TPase functions, although, in themselves, these have not led o a definiti v e mechanism. The F 1 -ATPase is a multi-subunit sysem containing 3 β-catalytic sites that have been studied by biohysical single-molecule experiments based on direct visualizaion of the rotation of its central γ -subunit. 6 However, it is difcult to esta b lish which interconverting site or sites contribute nergy for the observ ed r otation, gi v en that a site can perform he elementary chemical steps of ATP binding, ATP hydr ol ytic ond cleav a ge, and pr oduct (Pi and adenosine diphosphate, ADP) elease. 7 Originally, the molecular mechanism of ATP syntheis/hydr ol ysis w as studied using classical biochemical pproaches that provided a wealth of fundamental data. A i-site Boyer’s binding change mechanism of ATP syntheis/hydr ol ysis (Nobel Prize for Chemistry, 1997) was postulated etween 1973 and 1993 based on biochemical unisite/multisite atalysis and oxygen exchange experiments. 8 An alternati v e ri-site Nath’s torsional mechanism of energy transduction nd ATP synthesis/hydr ol ysis w as first pr oposed in 1999 and ev eloped ov er the next 25 yr using a nov el m ultidisciplinar y pproac h, 9 whic h inte gr ated physics, c hemistry, bioc hemistry, nd engineering. The dir ect measur ements by Senior and oworkers of the fluorescence quenching of tryptophan probes

Abstract Image

阐明一个复杂的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信