Quran Wu, Michael Daniels, Areej El-Jawahri, Marie Bakitas, Zhigang Li
{"title":"Joint modeling in presence of informative censoring on the retrospective time scale with application to palliative care research.","authors":"Quran Wu, Michael Daniels, Areej El-Jawahri, Marie Bakitas, Zhigang Li","doi":"10.1093/biostatistics/kxad028","DOIUrl":null,"url":null,"abstract":"<p><p>Joint modeling of longitudinal data such as quality of life data and survival data is important for palliative care researchers to draw efficient inferences because it can account for the associations between those two types of data. Modeling quality of life on a retrospective from death time scale is useful for investigators to interpret the analysis results of palliative care studies which have relatively short life expectancies. However, informative censoring remains a complex challenge for modeling quality of life on the retrospective time scale although it has been addressed for joint models on the prospective time scale. To fill this gap, we develop a novel joint modeling approach that can address the challenge by allowing informative censoring events to be dependent on patients' quality of life and survival through a random effect. There are two sub-models in our approach: a linear mixed effect model for the longitudinal quality of life and a competing-risk model for the death time and dropout time that share the same random effect as the longitudinal model. Our approach can provide unbiased estimates for parameters of interest by appropriately modeling the informative censoring time. Model performance is assessed with a simulation study and compared with existing approaches. A real-world study is presented to illustrate the application of the new approach.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"754-768"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad028","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Joint modeling of longitudinal data such as quality of life data and survival data is important for palliative care researchers to draw efficient inferences because it can account for the associations between those two types of data. Modeling quality of life on a retrospective from death time scale is useful for investigators to interpret the analysis results of palliative care studies which have relatively short life expectancies. However, informative censoring remains a complex challenge for modeling quality of life on the retrospective time scale although it has been addressed for joint models on the prospective time scale. To fill this gap, we develop a novel joint modeling approach that can address the challenge by allowing informative censoring events to be dependent on patients' quality of life and survival through a random effect. There are two sub-models in our approach: a linear mixed effect model for the longitudinal quality of life and a competing-risk model for the death time and dropout time that share the same random effect as the longitudinal model. Our approach can provide unbiased estimates for parameters of interest by appropriately modeling the informative censoring time. Model performance is assessed with a simulation study and compared with existing approaches. A real-world study is presented to illustrate the application of the new approach.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.