Impact of the Spatial Velocity Inlet Distribution on the Hemodynamics of the Thoracic Aorta.

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Alessandro Mariotti, Simona Celi, Maria Nicole Antonuccio, Maria Vittoria Salvetti
{"title":"Impact of the Spatial Velocity Inlet Distribution on the Hemodynamics of the Thoracic Aorta.","authors":"Alessandro Mariotti,&nbsp;Simona Celi,&nbsp;Maria Nicole Antonuccio,&nbsp;Maria Vittoria Salvetti","doi":"10.1007/s13239-023-00682-2","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of the distribution in space of the inlet velocity in the numerical simulations of the hemodynamics in the thoracic aorta is systematically investigated. A real healthy aorta geometry, for which in-vivo measurements are available, is considered. The distribution is modeled through a truncated cone shape, which is a suitable approximation of the real one downstream of a trileaflet aortic valve during the systolic part of the cardiac cycle. The ratio between the upper and the lower base of the truncated cone and the position of the center of the upper base are selected as uncertain parameters. A stochastic approach is chosen, based on the generalized Polynomial Chaos expansion, to obtain accurate response surfaces of the quantities of interest in the parameter space. The selected parameters influence the velocity distribution in the ascending aorta. Consequently, effects on the wall shear stress are observed, confirming the need to use patient-specific inlet conditions if interested in the hemodynamics of this region. The surface base ratio is globally the most important parameter. Conversely, the impact on the velocity and wall shear stress in the aortic arch and descending aorta is almost negligible.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"713-725"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-023-00682-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of the distribution in space of the inlet velocity in the numerical simulations of the hemodynamics in the thoracic aorta is systematically investigated. A real healthy aorta geometry, for which in-vivo measurements are available, is considered. The distribution is modeled through a truncated cone shape, which is a suitable approximation of the real one downstream of a trileaflet aortic valve during the systolic part of the cardiac cycle. The ratio between the upper and the lower base of the truncated cone and the position of the center of the upper base are selected as uncertain parameters. A stochastic approach is chosen, based on the generalized Polynomial Chaos expansion, to obtain accurate response surfaces of the quantities of interest in the parameter space. The selected parameters influence the velocity distribution in the ascending aorta. Consequently, effects on the wall shear stress are observed, confirming the need to use patient-specific inlet conditions if interested in the hemodynamics of this region. The surface base ratio is globally the most important parameter. Conversely, the impact on the velocity and wall shear stress in the aortic arch and descending aorta is almost negligible.

Abstract Image

空间速度入口分布对胸主动脉血流动力学的影响。
系统地研究了胸主动脉血流动力学数值模拟中入口速度空间分布的影响。考虑了一种真正健康的主动脉几何结构,可以进行体内测量。分布是通过截锥形状建模的,截锥形状是心动周期收缩部分三叶主动脉瓣下游真实分布的合适近似值。截锥的上底和下底之间的比率以及上底中心的位置被选择为不确定参数。基于广义多项式混沌展开,选择了一种随机方法来获得参数空间中感兴趣量的精确响应面。所选择的参数影响升主动脉中的速度分布。因此,观察到了对壁剪切应力的影响,证实了如果对该区域的血液动力学感兴趣,则需要使用患者特定的入口条件。曲面基准比是全局上最重要的参数。相反,对主动脉弓和降主动脉中的速度和壁剪切应力的影响几乎可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信