The AnimalAssociatedMetagenomeDB reveals a bias towards livestock and developed countries and blind spots in functional-potential studies of animal-associated microbiomes.

IF 4.9 Q1 MICROBIOLOGY
Anderson Paulo Avila Santos, Muhammad Kabiru Nata'ala, Jonas Coelho Kasmanas, Alexander Bartholomäus, Tina Keller-Costa, Stephanie D Jurburg, Tamara Tal, Amélia Camarinha-Silva, João Pedro Saraiva, André Carlos Ponce de Leon Ferreira de Carvalho, Peter F Stadler, Danilo Sipoli Sanches, Ulisses Rocha
{"title":"The AnimalAssociatedMetagenomeDB reveals a bias towards livestock and developed countries and blind spots in functional-potential studies of animal-associated microbiomes.","authors":"Anderson Paulo Avila Santos, Muhammad Kabiru Nata'ala, Jonas Coelho Kasmanas, Alexander Bartholomäus, Tina Keller-Costa, Stephanie D Jurburg, Tamara Tal, Amélia Camarinha-Silva, João Pedro Saraiva, André Carlos Ponce de Leon Ferreira de Carvalho, Peter F Stadler, Danilo Sipoli Sanches, Ulisses Rocha","doi":"10.1186/s42523-023-00267-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metagenomic data can shed light on animal-microbiome relationships and the functional potential of these communities. Over the past years, the generation of metagenomics data has increased exponentially, and so has the availability and reusability of data present in public repositories. However, identifying which datasets and associated metadata are available is not straightforward. We created the Animal-Associated Metagenome Metadata Database (AnimalAssociatedMetagenomeDB - AAMDB) to facilitate the identification and reuse of publicly available non-human, animal-associated metagenomic data, and metadata. Further, we used the AAMDB to (i) annotate common and scientific names of the species; (ii) determine the fraction of vertebrates and invertebrates; (iii) study their biogeography; and (iv) specify whether the animals were wild, pets, livestock or used for medical research.</p><p><strong>Results: </strong>We manually selected metagenomes associated with non-human animals from SRA and MG-RAST.  Next, we standardized and curated 51 metadata attributes (e.g., host, compartment, geographic coordinates, and country). The AAMDB version 1.0 contains 10,885 metagenomes associated with 165 different species from 65 different countries. From the collected metagenomes, 51.1% were recovered from animals associated with medical research or grown for human consumption (i.e., mice, rats, cattle, pigs, and poultry). Further, we observed an over-representation of animals collected in temperate regions (89.2%) and a lower representation of samples from the polar zones, with only 11 samples in total. The most common genus among invertebrate animals was Trichocerca (rotifers).</p><p><strong>Conclusion: </strong>Our work may guide host species selection in novel animal-associated metagenome research, especially in biodiversity and conservation studies. The data available in our database will allow scientists to perform meta-analyses and test new hypotheses (e.g., host-specificity, strain heterogeneity, and biogeography of animal-associated metagenomes), leveraging existing data. The AAMDB WebApp is a user-friendly interface that is publicly available at https://webapp.ufz.de/aamdb/ .</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552293/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-023-00267-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Metagenomic data can shed light on animal-microbiome relationships and the functional potential of these communities. Over the past years, the generation of metagenomics data has increased exponentially, and so has the availability and reusability of data present in public repositories. However, identifying which datasets and associated metadata are available is not straightforward. We created the Animal-Associated Metagenome Metadata Database (AnimalAssociatedMetagenomeDB - AAMDB) to facilitate the identification and reuse of publicly available non-human, animal-associated metagenomic data, and metadata. Further, we used the AAMDB to (i) annotate common and scientific names of the species; (ii) determine the fraction of vertebrates and invertebrates; (iii) study their biogeography; and (iv) specify whether the animals were wild, pets, livestock or used for medical research.

Results: We manually selected metagenomes associated with non-human animals from SRA and MG-RAST.  Next, we standardized and curated 51 metadata attributes (e.g., host, compartment, geographic coordinates, and country). The AAMDB version 1.0 contains 10,885 metagenomes associated with 165 different species from 65 different countries. From the collected metagenomes, 51.1% were recovered from animals associated with medical research or grown for human consumption (i.e., mice, rats, cattle, pigs, and poultry). Further, we observed an over-representation of animals collected in temperate regions (89.2%) and a lower representation of samples from the polar zones, with only 11 samples in total. The most common genus among invertebrate animals was Trichocerca (rotifers).

Conclusion: Our work may guide host species selection in novel animal-associated metagenome research, especially in biodiversity and conservation studies. The data available in our database will allow scientists to perform meta-analyses and test new hypotheses (e.g., host-specificity, strain heterogeneity, and biogeography of animal-associated metagenomes), leveraging existing data. The AAMDB WebApp is a user-friendly interface that is publicly available at https://webapp.ufz.de/aamdb/ .

Abstract Image

Abstract Image

Abstract Image

动物协会MetagenomeDB揭示了对牲畜和发达国家的偏见,以及动物相关微生物组功能潜力研究的盲点。
背景:宏基因组数据可以揭示动物与微生物组的关系以及这些群落的功能潜力。在过去的几年里,宏基因组学数据的生成呈指数级增长,公共存储库中数据的可用性和可重用性也呈指数级增加。然而,识别哪些数据集和相关元数据是可用的并不简单。我们创建了动物相关宏基因组元数据数据库(AnimalAssociatedMetagenomeDB-AAMDB),以便于识别和重复使用公开的非人类、动物相关的宏基因组数据和元数据。此外,我们使用AAMDB来(i)注释该物种的常见名称和科学名称;(ii)确定脊椎动物和无脊椎动物的比例;(iii)研究其生物地理学;以及(iv)说明这些动物是野生动物、宠物、牲畜还是用于医学研究。结果:我们从SRA和MG-RAST中手动选择了与非人类动物相关的宏基因组。接下来,我们对51个元数据属性(例如,主机、隔间、地理坐标和国家)进行了标准化和策划。AAMDB版本1.0包含10885个宏基因组,涉及来自65个不同国家的165个不同物种。从收集的宏基因组中,51.1%是从与医学研究相关的动物或为人类食用而种植的动物(即小鼠、大鼠、牛、猪和家禽)中回收的。此外,我们观察到在温带地区采集的动物代表性过高(89.2%),而在极地地区采集的样本代表性较低,总共只有11个样本。无脊椎动物中最常见的属是轮虫属。结论:我们的工作可以指导新的动物相关宏基因组研究,特别是生物多样性和保护研究中的宿主物种选择。我们数据库中的可用数据将使科学家能够利用现有数据进行荟萃分析并测试新的假设(例如宿主特异性、菌株异质性和动物相关宏基因组的生物地理学)。AAMDB WebApp是一个用户友好的界面,可在https://webapp.ufz.de/aamdb/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信