Glucose-responsive enzymatic biomimetic nanodots for H2O2 self-supplied catalytic photothermal/chemodynamic anticancer therapy

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Yinghui Xu , Jiayi Bian , Xin Liu , Zhengzheng Qian , Minghao Sun , Cheng Zhang , Ruiyang Pan , Qitong Li , Changrui Sun , Bin Lin , Kun Peng , Nan Lu , Xikuang Yao , Wenpei Fan
{"title":"Glucose-responsive enzymatic biomimetic nanodots for H2O2 self-supplied catalytic photothermal/chemodynamic anticancer therapy","authors":"Yinghui Xu ,&nbsp;Jiayi Bian ,&nbsp;Xin Liu ,&nbsp;Zhengzheng Qian ,&nbsp;Minghao Sun ,&nbsp;Cheng Zhang ,&nbsp;Ruiyang Pan ,&nbsp;Qitong Li ,&nbsp;Changrui Sun ,&nbsp;Bin Lin ,&nbsp;Kun Peng ,&nbsp;Nan Lu ,&nbsp;Xikuang Yao ,&nbsp;Wenpei Fan","doi":"10.1016/j.actbio.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Photothermal therapy (PTT) combined with chemodynamic therapy (CDT) presents an appealing complementary anti-tumor strategy, wherein PTT accelerates the production of reactive oxygen species (ROS) in CDT and CDT eliminates residual tumor tissues that survive from PTT treatment. However, nanomaterials utilized in PTT/CDT are limited by non-specific damage to the entire organism. Herein, a glucose-responsive enzymatic Fe@HRP-ABTS/GOx nanodot is judiciously designed for tumor-specific PTT/CDT via a simple and clean protein-templated biomimetic mineralization synthesis. By oxidizing glucose in tumor cells, glucose oxidase (GOx) activates glucose-responsive tumor therapy and increases the concentration of H<sub>2</sub>O<sub>2</sub> at the tumor site. More importantly, the self-supplied peroxide hydrogen (H<sub>2</sub>O<sub>2</sub>) can convert ABTS (2,2′-Hydrazine-bis(3-ethylbenzothiazoline-6-sulfonic acid) diamine salt) into oxidized ABTS (oxABTS) through horseradish peroxidase (HRP) catalysis for PTT and photoacoustic (PA) imaging. Furthermore, the Fe<sup>2+</sup> arising from the reduction of Fe<sup>3+</sup> by overexpressed GSH reacts with H<sub>2</sub>O<sub>2</sub> to generate intensely reactive •OH through the Fenton reaction, concurrently depleting GSH and inducing efficient tumor CDT. The in vitro and in vivo experiments demonstrate superior cancer cell killing and tumor eradication effect of Fe@HRP-ABTS/GOx nanodot under near-infrared (NIR) laser irradiation. Collectively, the nanodots provide mutually reinforcing catalytic PTT/CDT anti-tumor strategies for treating liver cancer and potentially other malignancies.</p></div><div><h3>Statement of significance</h3><p>Combinatorial antitumor therapy with nanomedicines presents great prospects for development. However, the limitation of non-specific damage to normal tissues hinders its further clinical application. In this work, we fabricated tumor-selective biomimetic Fe@HRP-ABTS/GOx nanodots for H<sub>2</sub>O<sub>2</sub> self-supplied catalytic photothermal/chemodynamic therapy of tumors. The biomimetic synthesis strategy provides the nanodots with enzymatic activity in response to glucose to produce H<sub>2</sub>O<sub>2</sub>. The self-supplied H<sub>2</sub>O<sub>2</sub> initiates photothermal therapy with oxidized ABTS and enhances chemodynamic therapy through simultaneous •OH generation and GSH depletion. Our work provides a new paradigm for developing tumor-selective catalytic nanomedicines and will guide further clinical translation of the enzymatic biomimetic synthesis strategy.</p></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"172 ","pages":"Pages 441-453"},"PeriodicalIF":9.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1742706123006013/pdfft?md5=99d76e289a4ef9a0d18b96c85314091b&pid=1-s2.0-S1742706123006013-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706123006013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photothermal therapy (PTT) combined with chemodynamic therapy (CDT) presents an appealing complementary anti-tumor strategy, wherein PTT accelerates the production of reactive oxygen species (ROS) in CDT and CDT eliminates residual tumor tissues that survive from PTT treatment. However, nanomaterials utilized in PTT/CDT are limited by non-specific damage to the entire organism. Herein, a glucose-responsive enzymatic Fe@HRP-ABTS/GOx nanodot is judiciously designed for tumor-specific PTT/CDT via a simple and clean protein-templated biomimetic mineralization synthesis. By oxidizing glucose in tumor cells, glucose oxidase (GOx) activates glucose-responsive tumor therapy and increases the concentration of H2O2 at the tumor site. More importantly, the self-supplied peroxide hydrogen (H2O2) can convert ABTS (2,2′-Hydrazine-bis(3-ethylbenzothiazoline-6-sulfonic acid) diamine salt) into oxidized ABTS (oxABTS) through horseradish peroxidase (HRP) catalysis for PTT and photoacoustic (PA) imaging. Furthermore, the Fe2+ arising from the reduction of Fe3+ by overexpressed GSH reacts with H2O2 to generate intensely reactive •OH through the Fenton reaction, concurrently depleting GSH and inducing efficient tumor CDT. The in vitro and in vivo experiments demonstrate superior cancer cell killing and tumor eradication effect of Fe@HRP-ABTS/GOx nanodot under near-infrared (NIR) laser irradiation. Collectively, the nanodots provide mutually reinforcing catalytic PTT/CDT anti-tumor strategies for treating liver cancer and potentially other malignancies.

Statement of significance

Combinatorial antitumor therapy with nanomedicines presents great prospects for development. However, the limitation of non-specific damage to normal tissues hinders its further clinical application. In this work, we fabricated tumor-selective biomimetic Fe@HRP-ABTS/GOx nanodots for H2O2 self-supplied catalytic photothermal/chemodynamic therapy of tumors. The biomimetic synthesis strategy provides the nanodots with enzymatic activity in response to glucose to produce H2O2. The self-supplied H2O2 initiates photothermal therapy with oxidized ABTS and enhances chemodynamic therapy through simultaneous •OH generation and GSH depletion. Our work provides a new paradigm for developing tumor-selective catalytic nanomedicines and will guide further clinical translation of the enzymatic biomimetic synthesis strategy.

葡萄糖响应酶仿生纳米点用于H2O2自供催化光热/化学动力学抗癌治疗。
光热疗法(PTT)与化学动力学疗法(CDT)相结合提供了一种有吸引力的互补抗肿瘤策略,其中PTT加速了CDT中活性氧(ROS)的产生,CDT消除了从PTT治疗中存活下来的残留肿瘤组织。然而,PTT/CDT中使用的纳米材料受到对整个生物体的非特异性损伤的限制。在这里,一种葡萄糖反应酶Fe@HRP-ABTS/GOx纳米点是通过简单清洁的蛋白质模板仿生矿化合成为肿瘤特异性PTT/CDT而明智设计的。通过氧化肿瘤细胞中的葡萄糖,葡萄糖氧化酶(GOx)激活葡萄糖反应性肿瘤治疗,并增加肿瘤部位H2O2的浓度。更重要的是,自供过氧化氢(H2O2)可以通过辣根过氧化物酶(HRP)催化PTT和光声(PA)成像,将ABTS(2,2'-肼双(3-乙基苯并噻唑啉-6-磺酸)二胺盐)转化为氧化的ABTS(oxABTS)。此外,由过表达的GSH还原Fe3+产生的Fe2+与H2O2反应,通过Fenton反应产生强烈的反应性•OH,同时消耗GSH并诱导有效的肿瘤CDT。体外和体内实验表明Fe@HRP-ABTS/GOx纳米点在近红外(NIR)激光照射下。总之,纳米点为治疗肝癌和潜在的其他恶性肿瘤提供了相互增强的催化PTT/CDT抗肿瘤策略。意义陈述:纳米药物联合抗肿瘤治疗具有广阔的发展前景。然而,对正常组织的非特异性损伤的局限性阻碍了其进一步的临床应用。在这项工作中,我们制作了肿瘤选择性仿生Fe@HRP-ABTS/GOx纳米点用于H2O2自身提供的肿瘤催化光热/化学动力学治疗。仿生合成策略为纳米点提供了响应葡萄糖产生H2O2的酶活性。自我供应的H2O2通过氧化的ABTS启动光热治疗,并通过同时产生•OH和GSH耗竭来增强化学动力学治疗。我们的工作为开发肿瘤选择性催化纳米药物提供了一种新的范式,并将指导酶仿生合成策略的进一步临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信