Lifen Zhan , Wen Wu , Qiongling Yang , Huiqun Shen , Limin Liu , Renzhi Kang
{"title":"Transcription factor TEAD4 facilitates glycolysis and proliferation of gastric cancer cells by activating PKMYT1","authors":"Lifen Zhan , Wen Wu , Qiongling Yang , Huiqun Shen , Limin Liu , Renzhi Kang","doi":"10.1016/j.mcp.2023.101932","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Gastric cancer (GC) ranks third for cancer deaths worldwide, and glycolysis is a hallmark of several cancers, including GC. TEAD4 plays a role in establishing an oncogenic cascade in cancers, including GC. Whether TEAD4 can influence the glycolysis of GC cells remains uncovered. Hence, this study attempted to investigate the impact on glycolysis of GC cells by TEAD4.</p></div><div><h3>Methods</h3><p>By using bioinformatics analysis, differentially expressed mRNAs were screened, and downstream regulatory genes were predicted. Expression levels of TEAD4 and PKMYT1 were assessed by qRT-PCR. The binding sites between TEAD4 and PKMYT1 were predicted by the JASPAR database, meanwhile their modulatory relationship was confirmed through dual-luciferase assay and chromatin Immunoprecipitation (ChIP). Cell viability and proliferation were assayed via CCK-8 and colony formation assays. Glycolysis was measured by assaying extracellular acidification rate, oxygen consumption rate, and production of pyruvic acid, lactate, citrate, and malate. Expression levels of proteins (HK-2 and PKM2) related to glycolysis were assessed by Western blot.</p></div><div><h3>Results</h3><p>TEAD4 was upregulated in GC tissues and cells. TEAD4 knockdown substantially repressed glycolysis and proliferation of GC cells. PKMYT1, the target gene downstream of TEAD4, was identified via bioinformatics prediction, and its expression was elevated in GC. Dual-luciferase and ChIP assay validated the targeted relationship between the promoter region of PKMYT1 and TEAD4. As revealed by rescue experiments, the knockdown of TEAD4 reversed the stimulative effect on GC cell glycolysis and proliferation by forced expression of PKMYT1.</p></div><div><h3>Conclusion</h3><p>TEAD4 activated PKMYT1 to facilitate the proliferation and glycolysis of GC cells. TEAD4 and PKMYT1 may be possible therapeutic targets for GC.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"72 ","pages":"Article 101932"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850823000415/pdfft?md5=749710aeec8c3235d170956e3e02cece&pid=1-s2.0-S0890850823000415-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850823000415","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Gastric cancer (GC) ranks third for cancer deaths worldwide, and glycolysis is a hallmark of several cancers, including GC. TEAD4 plays a role in establishing an oncogenic cascade in cancers, including GC. Whether TEAD4 can influence the glycolysis of GC cells remains uncovered. Hence, this study attempted to investigate the impact on glycolysis of GC cells by TEAD4.
Methods
By using bioinformatics analysis, differentially expressed mRNAs were screened, and downstream regulatory genes were predicted. Expression levels of TEAD4 and PKMYT1 were assessed by qRT-PCR. The binding sites between TEAD4 and PKMYT1 were predicted by the JASPAR database, meanwhile their modulatory relationship was confirmed through dual-luciferase assay and chromatin Immunoprecipitation (ChIP). Cell viability and proliferation were assayed via CCK-8 and colony formation assays. Glycolysis was measured by assaying extracellular acidification rate, oxygen consumption rate, and production of pyruvic acid, lactate, citrate, and malate. Expression levels of proteins (HK-2 and PKM2) related to glycolysis were assessed by Western blot.
Results
TEAD4 was upregulated in GC tissues and cells. TEAD4 knockdown substantially repressed glycolysis and proliferation of GC cells. PKMYT1, the target gene downstream of TEAD4, was identified via bioinformatics prediction, and its expression was elevated in GC. Dual-luciferase and ChIP assay validated the targeted relationship between the promoter region of PKMYT1 and TEAD4. As revealed by rescue experiments, the knockdown of TEAD4 reversed the stimulative effect on GC cell glycolysis and proliferation by forced expression of PKMYT1.
Conclusion
TEAD4 activated PKMYT1 to facilitate the proliferation and glycolysis of GC cells. TEAD4 and PKMYT1 may be possible therapeutic targets for GC.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.