Missed connections: Exploring features of undergraduate biology students' knowledge networks relating gene regulation, cell-cell communication, and phenotypic expression.

IF 4.6 2区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Sharleen Flowers, Kal H Holder, Gabrielle K Rump, Stephanie M Gardner
{"title":"Missed connections: Exploring features of undergraduate biology students' knowledge networks relating gene regulation, cell-cell communication, and phenotypic expression.","authors":"Sharleen Flowers, Kal H Holder, Gabrielle K Rump, Stephanie M Gardner","doi":"10.1187/cbe.22-03-0041","DOIUrl":null,"url":null,"abstract":"<p><p>Explaining biological phenomena requires understanding how different processes function and describing interactions between components at various levels of organization over time and space in biological systems. This is a desired competency yet is a complicated and often challenging task for undergraduate biology students. Therefore, we need a better understanding of their integrated knowledge regarding important biological concepts. Informed by the theory of knowledge integration and mechanistic reasoning, in this qualitative case study, we elicited and characterized knowledge networks of nine undergraduate biology students. We investigated students' conceptions of and the various ways they connect three fundamental subsystems in biology: 1) gene regulation, 2) cell-cell communication, and 3) phenotypic expression. We found that only half of the conceptual questions regarding the three subsystems were answered correctly by the majority of students. Knowledge networks tended to be linear and unidirectional, with little variation in the types of relationships displayed. Students did not spontaneously express mechanistic connections, mainly described undefined, cellular, and macromolecular levels of organization, and mainly discussed unspecified and intracellular localizations. These results emphasize the need to support students' understanding of fundamental concepts, and promoting knowledge integration in the classroom could assist students' ability to understand biological systems.</p>","PeriodicalId":56321,"journal":{"name":"Cbe-Life Sciences Education","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cbe-Life Sciences Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1187/cbe.22-03-0041","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

Explaining biological phenomena requires understanding how different processes function and describing interactions between components at various levels of organization over time and space in biological systems. This is a desired competency yet is a complicated and often challenging task for undergraduate biology students. Therefore, we need a better understanding of their integrated knowledge regarding important biological concepts. Informed by the theory of knowledge integration and mechanistic reasoning, in this qualitative case study, we elicited and characterized knowledge networks of nine undergraduate biology students. We investigated students' conceptions of and the various ways they connect three fundamental subsystems in biology: 1) gene regulation, 2) cell-cell communication, and 3) phenotypic expression. We found that only half of the conceptual questions regarding the three subsystems were answered correctly by the majority of students. Knowledge networks tended to be linear and unidirectional, with little variation in the types of relationships displayed. Students did not spontaneously express mechanistic connections, mainly described undefined, cellular, and macromolecular levels of organization, and mainly discussed unspecified and intracellular localizations. These results emphasize the need to support students' understanding of fundamental concepts, and promoting knowledge integration in the classroom could assist students' ability to understand biological systems.

遗漏的联系:探索生物学本科生与基因调控、细胞间通讯和表型表达相关的知识网络的特征。
解释生物现象需要了解不同的过程是如何发挥作用的,并描述生物系统中不同组织层次的组件之间在时间和空间上的相互作用。这是一项理想的能力,但对生物学本科生来说是一项复杂且经常具有挑战性的任务。因此,我们需要更好地了解他们关于重要生物学概念的综合知识。在这项定性案例研究中,我们运用知识整合理论和机械推理理论,对9名生物学本科生的知识网络进行了归纳和表征。我们调查了学生对生物学中三个基本子系统的概念及其连接方式:1)基因调控,2)细胞-细胞通讯,3)表型表达。我们发现,关于这三个子系统的概念问题只有一半得到了大多数学生的正确回答。知识网络往往是线性和单向的,所显示的关系类型变化不大。学生们并没有自发地表达机制联系,主要描述了未定义的、细胞和大分子水平的组织,并主要讨论了未指定的和细胞内的定位。这些结果强调了支持学生理解基本概念的必要性,在课堂上促进知识整合可以帮助学生理解生物系统的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cbe-Life Sciences Education
Cbe-Life Sciences Education EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
6.50
自引率
13.50%
发文量
100
审稿时长
>12 weeks
期刊介绍: CBE—Life Sciences Education (LSE), a free, online quarterly journal, is published by the American Society for Cell Biology (ASCB). The journal was launched in spring 2002 as Cell Biology Education—A Journal of Life Science Education. The ASCB changed the name of the journal in spring 2006 to better reflect the breadth of its readership and the scope of its submissions. LSE publishes peer-reviewed articles on life science education at the K–12, undergraduate, and graduate levels. The ASCB believes that learning in biology encompasses diverse fields, including math, chemistry, physics, engineering, computer science, and the interdisciplinary intersections of biology with these fields. Within biology, LSE focuses on how students are introduced to the study of life sciences, as well as approaches in cell biology, developmental biology, neuroscience, biochemistry, molecular biology, genetics, genomics, bioinformatics, and proteomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信