{"title":"A positive feedback regulatory loop, SA-AtNAP-SAG202/SARD1-ICS1-SA, in SA biosynthesis involved in leaf senescence but not defense response.","authors":"Yaxin Wang, Bin Liu, Youzhen Hu, Su-Sheng Gan","doi":"10.1186/s43897-022-00036-x","DOIUrl":null,"url":null,"abstract":"<p><p>Salicylic acid (SA) is an important plant hormone that regulates defense responses and leaf senescence. It is imperative to understand upstream factors that regulate genes of SA biosynthesis. SAG202/SARD1 is a key regulator for isochorismate synthase 1 (ICS1) induction and SA biosynthesis in defense responses. The regulatory mechanism of SA biosynthesis during leaf senescence is not well understood. Here we show that AtNAP, a senescence-specific NAC family transcription factor, directly regulates a senescence-associated gene named SAG202 as revealed in yeast one-hybrid and in planta assays. Inducible overexpreesion of AtNAP and SAG202 lead to high levels of SA and precocious senescence in leaves. Individual knockout mutants of sag202 and ics1 have markedly reduced SA levels and display a significantly delayed leaf senescence phenotype. Furthermore, SA positively feedback regulates AtNAP and SAG202. Our research has uncovered a unique positive feedback regulatory loop, SA-AtNAP-SAG202-ICS1-SA, that operates to control SA biosynthesis associated with leaf senescence but not defense response.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515000/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-022-00036-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Salicylic acid (SA) is an important plant hormone that regulates defense responses and leaf senescence. It is imperative to understand upstream factors that regulate genes of SA biosynthesis. SAG202/SARD1 is a key regulator for isochorismate synthase 1 (ICS1) induction and SA biosynthesis in defense responses. The regulatory mechanism of SA biosynthesis during leaf senescence is not well understood. Here we show that AtNAP, a senescence-specific NAC family transcription factor, directly regulates a senescence-associated gene named SAG202 as revealed in yeast one-hybrid and in planta assays. Inducible overexpreesion of AtNAP and SAG202 lead to high levels of SA and precocious senescence in leaves. Individual knockout mutants of sag202 and ics1 have markedly reduced SA levels and display a significantly delayed leaf senescence phenotype. Furthermore, SA positively feedback regulates AtNAP and SAG202. Our research has uncovered a unique positive feedback regulatory loop, SA-AtNAP-SAG202-ICS1-SA, that operates to control SA biosynthesis associated with leaf senescence but not defense response.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.