How Social Networks Influence Human Behavior: An Integrated Latent Space Approach for Differential Social Influence.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Psychometrika Pub Date : 2023-12-01 Epub Date: 2023-09-23 DOI:10.1007/s11336-023-09934-5
Jina Park, Ick Hoon Jin, Minjeong Jeon
{"title":"How Social Networks Influence Human Behavior: An Integrated Latent Space Approach for Differential Social Influence.","authors":"Jina Park, Ick Hoon Jin, Minjeong Jeon","doi":"10.1007/s11336-023-09934-5","DOIUrl":null,"url":null,"abstract":"<p><p>How social networks influence human behavior has been an interesting topic in applied research. Existing methods often utilized scale-level behavioral data (e.g., total number of positive responses) to estimate the influence of a social network on human behavior. This study proposes a novel approach to studying social influence that utilizes item-level behavioral measures. Under the latent space modeling framework, we integrate the two latent spaces for respondents' social network data and item-level behavior measures into a single space we call 'interaction map'. The interaction map visualizes the association between the latent homophily among respondents and their item-level behaviors, revealing differential social influence effects across item-level behaviors. We also measure overall social influence by assessing the impact of the interaction map. We evaluate the properties of the proposed approach via extensive simulation studies and demonstrate the proposed approach with a real data in the context of studying how students' friendship network influences their participation in school activities.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1529-1555"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09934-5","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

How social networks influence human behavior has been an interesting topic in applied research. Existing methods often utilized scale-level behavioral data (e.g., total number of positive responses) to estimate the influence of a social network on human behavior. This study proposes a novel approach to studying social influence that utilizes item-level behavioral measures. Under the latent space modeling framework, we integrate the two latent spaces for respondents' social network data and item-level behavior measures into a single space we call 'interaction map'. The interaction map visualizes the association between the latent homophily among respondents and their item-level behaviors, revealing differential social influence effects across item-level behaviors. We also measure overall social influence by assessing the impact of the interaction map. We evaluate the properties of the proposed approach via extensive simulation studies and demonstrate the proposed approach with a real data in the context of studying how students' friendship network influences their participation in school activities.

Abstract Image

社会网络如何影响人类行为:差异社会影响的综合潜在空间方法。
社交网络如何影响人类行为一直是应用研究中的一个有趣话题。现有的方法通常利用量表水平的行为数据(例如,积极反应的总数)来估计社交网络对人类行为的影响。本研究提出了一种利用项目层面的行为测量来研究社会影响的新方法。在潜在空间建模框架下,我们将受访者的社交网络数据和项目级行为测量的两个潜在空间整合到一个单独的空间中,我们称之为“互动地图”。互动图可视化了受访者潜在的同质性与其项目层面行为之间的关联,揭示了项目层面行为的不同社会影响效应。我们还通过评估互动图的影响来衡量整体社会影响。我们通过广泛的模拟研究评估了所提出方法的性质,并在研究学生的友谊网络如何影响他们参与学校活动的背景下,用真实数据证明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信