Nolan K Meyer, Daehun Kang, Zaki Ahmed, Myung-Ho In, Yunhong Shu, John Huston, Matt A Bernstein, Joshua D Trzasko
{"title":"Locally Low-Rank Denoising of Multi-Echo Functional MRI Data With Application in Resting-State Analysis.","authors":"Nolan K Meyer, Daehun Kang, Zaki Ahmed, Myung-Ho In, Yunhong Shu, John Huston, Matt A Bernstein, Joshua D Trzasko","doi":"10.1097/RMR.0000000000000307","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Locally low-rank (LLR) denoising of functional magnetic resonance imaging (fMRI) time series image data is extended to multi-echo (ME) data. The proposed method extends the capabilities of non-physiologic noise suppression beyond single-echo applications with a dedicated ME algorithm.</p><p><strong>Materials and methods: </strong>Following an institutional review board (IRB) approved protocol, resting-state fMRI data were acquired in 7 healthy subjects. A compact 3T scanner enabled whole-brain acquisition of multiband ME fMRI data at high spatial resolution (1.4 × 1.4 × 2.8 mm 3 ) with a 1810 ms repetition time (TR). Image data were denoised with ME-LLR preceding functional processing. The results of connectivity maps generated from denoised data were compared with maps generated with equivalent processing of non-denoised images. To assess ME-LLR as a method to reduce scan time, comparisons were made between maps computed from image data with full and retrospectively truncated durations. Assessments were completed with seed-based connectivity analyses using echo-combined image data. In a feasibility assessment, nondenoised and denoised full-duration echo-combined data were equivalently processed with independent component analysis (ICA) and compared.</p><p><strong>Results: </strong>ME-LLR denoising yielded strengthened resting-state network connectivity maps after nuisance regression and seed-based connectivity analysis. In assessing ME-LLR as a scan reduction mechanism, maps generated from denoised data at half scan time showed comparable quality with maps generated from full-duration, non-denoised data, at both single subject and group levels. ME-LLR substantially increased temporal signal-to-noise ratio (tSNR) for image data respective to each individual echo and for image data after nuisance regression. Among echo-specific image volumes, increases in tSNR yielded by ME-LLR were most pronounced for image data with the longest echo time and thereby lowest SNR. ICA showed resting-state networks consistently identified between non-denoised and denoised data, with clearer demarcation of networks for ME-LLR.</p><p><strong>Conclusions: </strong>ME-LLR is demonstrated to suppress non-physiologic noise, enhance functional connectivity map quality, and could potentially facilitate scan time reduction in ME-fMRI.</p>","PeriodicalId":39381,"journal":{"name":"Topics in Magnetic Resonance Imaging","volume":"32 5","pages":"37-49"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/3c/tmri-32-37.PMC10549890.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Magnetic Resonance Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/RMR.0000000000000307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Locally low-rank (LLR) denoising of functional magnetic resonance imaging (fMRI) time series image data is extended to multi-echo (ME) data. The proposed method extends the capabilities of non-physiologic noise suppression beyond single-echo applications with a dedicated ME algorithm.
Materials and methods: Following an institutional review board (IRB) approved protocol, resting-state fMRI data were acquired in 7 healthy subjects. A compact 3T scanner enabled whole-brain acquisition of multiband ME fMRI data at high spatial resolution (1.4 × 1.4 × 2.8 mm 3 ) with a 1810 ms repetition time (TR). Image data were denoised with ME-LLR preceding functional processing. The results of connectivity maps generated from denoised data were compared with maps generated with equivalent processing of non-denoised images. To assess ME-LLR as a method to reduce scan time, comparisons were made between maps computed from image data with full and retrospectively truncated durations. Assessments were completed with seed-based connectivity analyses using echo-combined image data. In a feasibility assessment, nondenoised and denoised full-duration echo-combined data were equivalently processed with independent component analysis (ICA) and compared.
Results: ME-LLR denoising yielded strengthened resting-state network connectivity maps after nuisance regression and seed-based connectivity analysis. In assessing ME-LLR as a scan reduction mechanism, maps generated from denoised data at half scan time showed comparable quality with maps generated from full-duration, non-denoised data, at both single subject and group levels. ME-LLR substantially increased temporal signal-to-noise ratio (tSNR) for image data respective to each individual echo and for image data after nuisance regression. Among echo-specific image volumes, increases in tSNR yielded by ME-LLR were most pronounced for image data with the longest echo time and thereby lowest SNR. ICA showed resting-state networks consistently identified between non-denoised and denoised data, with clearer demarcation of networks for ME-LLR.
Conclusions: ME-LLR is demonstrated to suppress non-physiologic noise, enhance functional connectivity map quality, and could potentially facilitate scan time reduction in ME-fMRI.
期刊介绍:
Topics in Magnetic Resonance Imaging is a leading information resource for professionals in the MRI community. This publication supplies authoritative, up-to-the-minute coverage of technical advances in this evolving field as well as practical, hands-on guidance from leading experts. Six times a year, TMRI focuses on a single timely topic of interest to radiologists. These topical issues present a variety of perspectives from top radiological authorities to provide an in-depth understanding of how MRI is being used in each area.