{"title":"Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology","authors":"Yuting Jiang , Chengdi Wang , Shengtao Zhou","doi":"10.1016/j.semcancer.2023.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>As data-driven science, artificial intelligence (AI) has paved a promising path toward an evolving health system teeming with thrilling opportunities for precision oncology. Notwithstanding the tremendous success of oncological AI in such fields as lung carcinoma, breast tumor and brain malignancy, less attention has been devoted to investigating the influence of AI on gynecologic oncology. Hereby, this review sheds light on the ever-increasing contribution of state-of-the-art AI techniques to the refined risk stratification and whole-course management of patients with gynecologic tumors, in particular, cervical, ovarian and endometrial cancer, centering on information and features extracted from clinical data (electronic health records), cancer imaging including radiological imaging, colposcopic images, cytological and histopathological digital images, and molecular profiling (genomics, transcriptomics, metabolomics and so forth). However, there are still noteworthy challenges beyond performance validation. Thus, this work further describes the limitations and challenges faced in the real-word implementation of AI models, as well as potential solutions to address these issues.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"96 ","pages":"Pages 82-99"},"PeriodicalIF":12.1000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X2300127X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
As data-driven science, artificial intelligence (AI) has paved a promising path toward an evolving health system teeming with thrilling opportunities for precision oncology. Notwithstanding the tremendous success of oncological AI in such fields as lung carcinoma, breast tumor and brain malignancy, less attention has been devoted to investigating the influence of AI on gynecologic oncology. Hereby, this review sheds light on the ever-increasing contribution of state-of-the-art AI techniques to the refined risk stratification and whole-course management of patients with gynecologic tumors, in particular, cervical, ovarian and endometrial cancer, centering on information and features extracted from clinical data (electronic health records), cancer imaging including radiological imaging, colposcopic images, cytological and histopathological digital images, and molecular profiling (genomics, transcriptomics, metabolomics and so forth). However, there are still noteworthy challenges beyond performance validation. Thus, this work further describes the limitations and challenges faced in the real-word implementation of AI models, as well as potential solutions to address these issues.
期刊介绍:
Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field.
The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies.
To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area.
The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.