{"title":"Ventral hippocampal projections to infralimbic cortex and basolateral amygdala are differentially activated by contextual fear and extinction recall","authors":"Emma T. Brockway, Sarah Simon, Michael R. Drew","doi":"10.1016/j.nlm.2023.107832","DOIUrl":null,"url":null,"abstract":"<div><p>Fear and extinction learning are thought to generate distinct and competing memory representations in the hippocampus. How these memory representations modulate the expression of appropriate behavioral responses remains unclear. To investigate this question, we used cholera toxin B subunit to retrolabel ventral hippocampal (vHPC) neurons projecting to the infralimbic cortex (IL) and basolateral amygdala (BLA) and then quantified c-Fos immediate early gene activity within these populations following expression of either contextual fear recall or contextual fear extinction recall. Fear recall was associated with increased c-Fos expression in vHPC projections to the BLA, whereas extinction recall was associated with increased activity in vHPC projections to IL. A control experiment was performed to confirm that the apparent shift in projection neuron activity was associated with extinction learning rather than mere context exposure. Overall, results indicate that hippocampal contextual fear and extinction memory representations differentially activate vHPC projections to IL and BLA. These findings suggest that hippocampal memory representations orchestrate appropriate behavioral responses through selective activation of projection pathways.</p></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":"205 ","pages":"Article 107832"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Learning and Memory","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1074742723001132","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fear and extinction learning are thought to generate distinct and competing memory representations in the hippocampus. How these memory representations modulate the expression of appropriate behavioral responses remains unclear. To investigate this question, we used cholera toxin B subunit to retrolabel ventral hippocampal (vHPC) neurons projecting to the infralimbic cortex (IL) and basolateral amygdala (BLA) and then quantified c-Fos immediate early gene activity within these populations following expression of either contextual fear recall or contextual fear extinction recall. Fear recall was associated with increased c-Fos expression in vHPC projections to the BLA, whereas extinction recall was associated with increased activity in vHPC projections to IL. A control experiment was performed to confirm that the apparent shift in projection neuron activity was associated with extinction learning rather than mere context exposure. Overall, results indicate that hippocampal contextual fear and extinction memory representations differentially activate vHPC projections to IL and BLA. These findings suggest that hippocampal memory representations orchestrate appropriate behavioral responses through selective activation of projection pathways.
期刊介绍:
Neurobiology of Learning and Memory publishes articles examining the neurobiological mechanisms underlying learning and memory at all levels of analysis ranging from molecular biology to synaptic and neural plasticity and behavior. We are especially interested in manuscripts that examine the neural circuits and molecular mechanisms underlying learning, memory and plasticity in both experimental animals and human subjects.