Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria.

IF 10.1 2区 生物学 Q1 MICROBIOLOGY
Leonie Jane Kiely, Kizkitza Busca, Jonathan A Lane, Douwe van Sinderen, Rita M Hickey
{"title":"Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria.","authors":"Leonie Jane Kiely, Kizkitza Busca, Jonathan A Lane, Douwe van Sinderen, Rita M Hickey","doi":"10.1093/femsre/fuad056","DOIUrl":null,"url":null,"abstract":"<p><p>A number of bacterial species are found in high abundance in the faeces of healthy breast-fed infants, an occurrence that is understood to be, at least in part, due to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). HMOs are the third most abundant component of human milk after lactose and lipids, and represent complex sugars which possess unique structural diversity and are resistant to infant gastrointestinal digestion. Thus, these sugars reach the infant distal intestine intact, thereby serving as a fermentable substrate for specific intestinal microbes, including Firmicutes, Proteobacteria, and especially infant-associated Bifidobacterium spp. which help to shape the infant gut microbiome. Bacteria utilising HMOs are equipped with genes associated with their degradation and a number of carbohydrate-active enzymes known as glycoside hydrolase enzymes have been identified in the infant gut, which supports this hypothesis. The resulting degraded HMOs can also be used as growth substrates for other infant gut bacteria present in a microbe-microbe interaction known as 'cross-feeding'. This review describes the current knowledge on HMO metabolism by particular infant gut-associated bacteria, many of which are currently used as commercial probiotics, including the distinct strategies employed by individual species for HMO utilisation.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629584/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuad056","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A number of bacterial species are found in high abundance in the faeces of healthy breast-fed infants, an occurrence that is understood to be, at least in part, due to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). HMOs are the third most abundant component of human milk after lactose and lipids, and represent complex sugars which possess unique structural diversity and are resistant to infant gastrointestinal digestion. Thus, these sugars reach the infant distal intestine intact, thereby serving as a fermentable substrate for specific intestinal microbes, including Firmicutes, Proteobacteria, and especially infant-associated Bifidobacterium spp. which help to shape the infant gut microbiome. Bacteria utilising HMOs are equipped with genes associated with their degradation and a number of carbohydrate-active enzymes known as glycoside hydrolase enzymes have been identified in the infant gut, which supports this hypothesis. The resulting degraded HMOs can also be used as growth substrates for other infant gut bacteria present in a microbe-microbe interaction known as 'cross-feeding'. This review describes the current knowledge on HMO metabolism by particular infant gut-associated bacteria, many of which are currently used as commercial probiotics, including the distinct strategies employed by individual species for HMO utilisation.

Abstract Image

Abstract Image

Abstract Image

婴儿肠道相关细菌利用母乳低聚糖的分子策略。
在健康母乳喂养婴儿的粪便中发现了大量细菌,据了解,这种情况的发生至少部分是由于这些细菌代谢母乳低聚糖(HMO)的能力。HMO是母乳中含量第三丰富的成分,仅次于乳糖和脂质,代表着具有独特结构多样性并对婴儿胃肠道消化具有抵抗力的复杂糖。因此,这些糖完好无损地到达婴儿远端肠道,从而成为特定肠道微生物的可发酵基质,包括厚壁菌门、变形菌门,尤其是与婴儿相关的双歧杆菌属。它们有助于塑造婴儿肠道微生物组。利用HMO的细菌具有与其降解相关的基因,在婴儿肠道中发现了许多被称为糖苷水解酶的碳水化合物活性酶,这支持了这一假设。由此产生的降解HMO也可以用作其他婴儿肠道细菌的生长基质,这些细菌存在于被称为“交叉喂养”的微生物-微生物相互作用中。这篇综述描述了特定婴儿肠道相关细菌HMO代谢的最新知识,其中许多细菌目前被用作商业益生菌,包括个别物种使用HMO的不同策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology reviews
FEMS microbiology reviews 生物-微生物学
CiteScore
17.50
自引率
0.90%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Title: FEMS Microbiology Reviews Journal Focus: Publishes reviews covering all aspects of microbiology not recently surveyed Reviews topics of current interest Provides comprehensive, critical, and authoritative coverage Offers new perspectives and critical, detailed discussions of significant trends May contain speculative and selective elements Aimed at both specialists and general readers Reviews should be framed within the context of general microbiology and biology Submission Criteria: Manuscripts should not be unevaluated compilations of literature Lectures delivered at symposia must review the related field to be acceptable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信