José L. Solano , Carlos Novoa , Marisol R. Lamprea , Leonardo A. Ortega
{"title":"Stress effects on spatial memory retrieval and brain c-Fos expression pattern in adults are modulated by early nicotine exposure","authors":"José L. Solano , Carlos Novoa , Marisol R. Lamprea , Leonardo A. Ortega","doi":"10.1016/j.nlm.2023.107831","DOIUrl":null,"url":null,"abstract":"<div><p>The cognitive effects of nicotine are linked to persistent modifications in extended neural systems that regulate cognitive and emotional processes, and these changes occur during development. Additionally, acute stress has modulatory effects on cognition that involve broad neural systems and can be influenced by prior environmental challenges. The effects of nicotine and stress may be interconnected, leading to modifications in a network of shared brain substrates. Here, we explored the interaction between nicotine and stress by evaluating the effects of acute stress exposure in spatial memory retrieval for animals pretreated with nicotine during adolescence or adulthood. Adolescent (35 days old) and adult (70 days old) male Wistar rats were treated for 21 days with one daily subcutaneous injection of nicotine 0.14 mg/ml (free base). 30 days after the last injection, rats were trained in the Barnes maze and tested 24 h later, half the rats were tested under regular conditions, and half of them were exposed to 1 h of restraining stress before the retrieval test, and brain samples were collected and c-Fos immunopositive cells were stained. Prolonged nicotine withdrawal or acute stress improved spatial memory retrieval. Acute stress in nicotine pretreated adults impaired spatial memory retrieval. Nicotine exposure during early adulthood resulted in long-lasting brain adaptations that amplified emotional responses to acute stress after prolonged drug withdrawal.</p></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":"205 ","pages":"Article 107831"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Learning and Memory","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1074742723001120","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The cognitive effects of nicotine are linked to persistent modifications in extended neural systems that regulate cognitive and emotional processes, and these changes occur during development. Additionally, acute stress has modulatory effects on cognition that involve broad neural systems and can be influenced by prior environmental challenges. The effects of nicotine and stress may be interconnected, leading to modifications in a network of shared brain substrates. Here, we explored the interaction between nicotine and stress by evaluating the effects of acute stress exposure in spatial memory retrieval for animals pretreated with nicotine during adolescence or adulthood. Adolescent (35 days old) and adult (70 days old) male Wistar rats were treated for 21 days with one daily subcutaneous injection of nicotine 0.14 mg/ml (free base). 30 days after the last injection, rats were trained in the Barnes maze and tested 24 h later, half the rats were tested under regular conditions, and half of them were exposed to 1 h of restraining stress before the retrieval test, and brain samples were collected and c-Fos immunopositive cells were stained. Prolonged nicotine withdrawal or acute stress improved spatial memory retrieval. Acute stress in nicotine pretreated adults impaired spatial memory retrieval. Nicotine exposure during early adulthood resulted in long-lasting brain adaptations that amplified emotional responses to acute stress after prolonged drug withdrawal.
期刊介绍:
Neurobiology of Learning and Memory publishes articles examining the neurobiological mechanisms underlying learning and memory at all levels of analysis ranging from molecular biology to synaptic and neural plasticity and behavior. We are especially interested in manuscripts that examine the neural circuits and molecular mechanisms underlying learning, memory and plasticity in both experimental animals and human subjects.