{"title":"How associations become behavior","authors":"Stefano Ghirlanda , Magnus Enquist","doi":"10.1016/j.nlm.2023.107833","DOIUrl":null,"url":null,"abstract":"<div><p>The <span>Rescorla and Wagner (1972)</span><span><span> model is the first mathematical theory to explain associative learning in the presence of multiple stimuli. Its main theoretical construct is that of associative strength, but this is connected to behavior only loosely. We propose a model in which behavior is described by a collection of </span>Poisson processes, each with a rate proportional to an associative strength. The model predicts that the time between behaviors follows an exponential or hypoexponential distribution. This prediction is supported by two data sets on autoshaped and instrumental behavior in rats.</span></p></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":"205 ","pages":"Article 107833"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Learning and Memory","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1074742723001144","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Rescorla and Wagner (1972) model is the first mathematical theory to explain associative learning in the presence of multiple stimuli. Its main theoretical construct is that of associative strength, but this is connected to behavior only loosely. We propose a model in which behavior is described by a collection of Poisson processes, each with a rate proportional to an associative strength. The model predicts that the time between behaviors follows an exponential or hypoexponential distribution. This prediction is supported by two data sets on autoshaped and instrumental behavior in rats.
期刊介绍:
Neurobiology of Learning and Memory publishes articles examining the neurobiological mechanisms underlying learning and memory at all levels of analysis ranging from molecular biology to synaptic and neural plasticity and behavior. We are especially interested in manuscripts that examine the neural circuits and molecular mechanisms underlying learning, memory and plasticity in both experimental animals and human subjects.