Unravelling the link between neurodevelopmental disorders and short tandem CGG-repeat expansions.

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dale J Annear, R Frank Kooy
{"title":"Unravelling the link between neurodevelopmental disorders and short tandem CGG-repeat expansions.","authors":"Dale J Annear, R Frank Kooy","doi":"10.1042/ETLS20230021","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodevelopmental disorders (NDDs) encompass a diverse group of disorders characterised by impaired cognitive abilities and developmental challenges. Short tandem repeats (STRs), repetitive DNA sequences found throughout the human genome, have emerged as potential contributors to NDDs. Specifically, the CGG trinucleotide repeat has been implicated in a wide range of NDDs, including Fragile X Syndrome (FXS), the most common inherited form of intellectual disability and autism. This review focuses on CGG STR expansions associated with NDDs and their impact on gene expression through repeat expansion-mediated epigenetic silencing. We explore the molecular mechanisms underlying CGG-repeat expansion and the resulting epigenetic modifications, such as DNA hypermethylation and gene silencing. Additionally, we discuss the involvement of other CGG STRs in neurodevelopmental diseases. Several examples, including FMR1, AFF2, AFF3, XYLT1, FRA10AC1, CBL, and DIP2B, highlight the complex relationship between CGG STR expansions and NDDs. Furthermore, recent advancements in this field are highlighted, shedding light on potential future research directions. Understanding the role of STRs, particularly CGG-repeats, in NDDs has the potential to uncover novel diagnostic and therapeutic strategies for these challenging disorders.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20230021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodevelopmental disorders (NDDs) encompass a diverse group of disorders characterised by impaired cognitive abilities and developmental challenges. Short tandem repeats (STRs), repetitive DNA sequences found throughout the human genome, have emerged as potential contributors to NDDs. Specifically, the CGG trinucleotide repeat has been implicated in a wide range of NDDs, including Fragile X Syndrome (FXS), the most common inherited form of intellectual disability and autism. This review focuses on CGG STR expansions associated with NDDs and their impact on gene expression through repeat expansion-mediated epigenetic silencing. We explore the molecular mechanisms underlying CGG-repeat expansion and the resulting epigenetic modifications, such as DNA hypermethylation and gene silencing. Additionally, we discuss the involvement of other CGG STRs in neurodevelopmental diseases. Several examples, including FMR1, AFF2, AFF3, XYLT1, FRA10AC1, CBL, and DIP2B, highlight the complex relationship between CGG STR expansions and NDDs. Furthermore, recent advancements in this field are highlighted, shedding light on potential future research directions. Understanding the role of STRs, particularly CGG-repeats, in NDDs has the potential to uncover novel diagnostic and therapeutic strategies for these challenging disorders.

解开神经发育障碍和短串联CGG重复扩增之间的联系。
神经发育障碍(NDD)包括一组以认知能力受损和发育挑战为特征的不同疾病。短串联重复序列(STR)是在整个人类基因组中发现的重复DNA序列,已成为NDD的潜在贡献者。具体而言,CGG三核苷酸重复序列与广泛的NDD有关,包括脆性X综合征(FXS),这是智力残疾和自闭症最常见的遗传形式。本文综述了与NDDs相关的CGG STR扩增及其通过重复扩增介导的表观遗传沉默对基因表达的影响。我们探索了CGG重复扩增的分子机制以及由此产生的表观遗传学修饰,如DNA超甲基化和基因沉默。此外,我们还讨论了其他CGG-STR在神经发育疾病中的作用。几个例子,包括FMR1、AFF2、AFF3、XYLT1、FRA10AC1、CBL和DIP2B,突出了CGG STR扩增与NDD之间的复杂关系。此外,还强调了该领域的最新进展,为未来潜在的研究方向提供了线索。了解STR,特别是CGG重复序列在NDD中的作用,有可能为这些具有挑战性的疾病找到新的诊断和治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
94
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信