Yuguo Feng, Yu Liu, Yuan Fang, Jin Chang, Fei Deng, Jin Liu, Yan Xiong
{"title":"Advances in the application of wearable sensors for gait analysis after total knee arthroplasty: a systematic review.","authors":"Yuguo Feng, Yu Liu, Yuan Fang, Jin Chang, Fei Deng, Jin Liu, Yan Xiong","doi":"10.1186/s42836-023-00204-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Wearable sensors have become a complementary means for evaluation of body function and gait in lower limb osteoarthritis. This study aimed to review the applications of wearable sensors for gait analysis after total knee arthroplasty (TKA).</p><p><strong>Methods: </strong>Five databases, including Web of Science Core Collection, Embase, Cochrane, Medline, and PubMed, were searched for articles published between January 2010 and March 2023, using predetermined search terms that focused on wearable sensors, TKA, and gait analysis as broad areas of interest.</p><p><strong>Results: </strong>A total of 25 articles were identified, involving 823 TKA patients. Methodologies varied widely across the articles, with inconsistencies found in reported patient characteristics, sensor data and experimental protocols. Patient-reported outcome measures (PROMs) and gait variables showed various recovery times from 1 week postoperatively to 5 years postoperatively. Gait analysis using wearable sensors and PROMs showed differences in controlled environments, daily life, and when comparing different surgeries.</p><p><strong>Conclusion: </strong>Wearable sensors offered the potential to remotely monitor the gait function post-TKA in both controlled environments and patients' daily life, and covered more aspects than PROMs. More cohort longitudinal studies are warranted to further confirm the benefits of this remote technology in clinical practice.</p>","PeriodicalId":52831,"journal":{"name":"Arthroplasty","volume":"5 1","pages":"49"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthroplasty","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s42836-023-00204-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Wearable sensors have become a complementary means for evaluation of body function and gait in lower limb osteoarthritis. This study aimed to review the applications of wearable sensors for gait analysis after total knee arthroplasty (TKA).
Methods: Five databases, including Web of Science Core Collection, Embase, Cochrane, Medline, and PubMed, were searched for articles published between January 2010 and March 2023, using predetermined search terms that focused on wearable sensors, TKA, and gait analysis as broad areas of interest.
Results: A total of 25 articles were identified, involving 823 TKA patients. Methodologies varied widely across the articles, with inconsistencies found in reported patient characteristics, sensor data and experimental protocols. Patient-reported outcome measures (PROMs) and gait variables showed various recovery times from 1 week postoperatively to 5 years postoperatively. Gait analysis using wearable sensors and PROMs showed differences in controlled environments, daily life, and when comparing different surgeries.
Conclusion: Wearable sensors offered the potential to remotely monitor the gait function post-TKA in both controlled environments and patients' daily life, and covered more aspects than PROMs. More cohort longitudinal studies are warranted to further confirm the benefits of this remote technology in clinical practice.