Mst Afroza Khatun, Md Anarul Hoque, Mattheos Koffas, Yan Feng
{"title":"Reducing the virulence of Pseudomonas aeruginosa by using multiple quorum-quenching enzymes.","authors":"Mst Afroza Khatun, Md Anarul Hoque, Mattheos Koffas, Yan Feng","doi":"10.1093/jimb/kuad028","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of multidrug-resistant Pseudomonas aeruginosa in healthcare settings poses a tremendous challenge to traditional antibiotic therapy. Pseudomonas aeruginosa utilizes quorum sensing (QS) to coordinate the production of virulence factors and the formation of drug-resistant biofilms. QS is mediated by signal compounds produced by P. aeruginosa as well as signal molecules produced by other non-pseudomonad bacteria. A potential strategy to prevent bacterial pathogenicity is utilizing enzymes to interfere with QS. Here, we used AidC, a quorum-quenching (QQ) enzyme from Chryseobacterium sp. strain StRB126 that can effectively hydrolyze N-(3-oxododecanoyl) homoserine lactone (3OC12-HSL) and N-butanoyl-homoserine lactone (C4-HSL), the major signal molecules synthesized by P. aeruginosa. The exogenous addition of AidC to P. aeruginosa wild-type strain PAO1 cultures significantly reduced the total protease and elastase activities and the production of pyocyanin. In addition, the application of AidC resulted in thin and sparse biofilm formation. Later, we used a metagenomic-derived QQ enzyme, QQ-2, in combination with AidC to attenuate PAO1 virulence when the presence of a non-pseudomonad signal compound, autoinducer-2, aggravated it. These findings suggest that using a combined antimicrobial approach may lead to a more efficacious therapeutic intervention against P. aeruginosa PAO1 infection, as its behavior is modulated in the presence of intraspecies and interspecies signal compounds.</p><p><strong>One-sentence summary: </strong>In this work, the potential of dual enzymes was investigated to interfere with quorum sensing as a novel concept for reducing the virulence of P. aeruginosa, which is influenced by both intra species and interspecies communication.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuad028","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa in healthcare settings poses a tremendous challenge to traditional antibiotic therapy. Pseudomonas aeruginosa utilizes quorum sensing (QS) to coordinate the production of virulence factors and the formation of drug-resistant biofilms. QS is mediated by signal compounds produced by P. aeruginosa as well as signal molecules produced by other non-pseudomonad bacteria. A potential strategy to prevent bacterial pathogenicity is utilizing enzymes to interfere with QS. Here, we used AidC, a quorum-quenching (QQ) enzyme from Chryseobacterium sp. strain StRB126 that can effectively hydrolyze N-(3-oxododecanoyl) homoserine lactone (3OC12-HSL) and N-butanoyl-homoserine lactone (C4-HSL), the major signal molecules synthesized by P. aeruginosa. The exogenous addition of AidC to P. aeruginosa wild-type strain PAO1 cultures significantly reduced the total protease and elastase activities and the production of pyocyanin. In addition, the application of AidC resulted in thin and sparse biofilm formation. Later, we used a metagenomic-derived QQ enzyme, QQ-2, in combination with AidC to attenuate PAO1 virulence when the presence of a non-pseudomonad signal compound, autoinducer-2, aggravated it. These findings suggest that using a combined antimicrobial approach may lead to a more efficacious therapeutic intervention against P. aeruginosa PAO1 infection, as its behavior is modulated in the presence of intraspecies and interspecies signal compounds.
One-sentence summary: In this work, the potential of dual enzymes was investigated to interfere with quorum sensing as a novel concept for reducing the virulence of P. aeruginosa, which is influenced by both intra species and interspecies communication.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology