Tumor dormancy: EMT beyond invasion and metastasis

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Patrick Aouad, Hazel M. Quinn, Adeline Berger, Cathrin Brisken
{"title":"Tumor dormancy: EMT beyond invasion and metastasis","authors":"Patrick Aouad,&nbsp;Hazel M. Quinn,&nbsp;Adeline Berger,&nbsp;Cathrin Brisken","doi":"10.1002/dvg.23552","DOIUrl":null,"url":null,"abstract":"<p>More than two-thirds of cancer-related deaths are attributable to metastases. In some tumor types metastasis can occur up to 20 years after diagnosis and successful treatment of the primary tumor, a phenomenon termed late recurrence. Metastases arise from disseminated tumor cells (DTCs) that leave the primary tumor early on in tumor development, either as single cells or clusters, adapt to new environments, and reduce or shut down their proliferation entering a state of dormancy for prolonged periods of time. Dormancy has been difficult to track clinically and study experimentally. Recent advances in technology and disease modeling have provided new insights into the molecular mechanisms orchestrating dormancy and the switch to a proliferative state. A new role for epithelial-mesenchymal transition (EMT) in inducing plasticity and maintaining a dormant state in several cancer models has been revealed. In this review, we summarize the major findings linking EMT to dormancy control and highlight the importance of pre-clinical models and tumor/tissue context when designing studies. Understanding of the cellular and molecular mechanisms controlling dormant DTCs is pivotal in developing new therapeutic agents that prevent distant recurrence by maintaining a dormant state.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23552","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

More than two-thirds of cancer-related deaths are attributable to metastases. In some tumor types metastasis can occur up to 20 years after diagnosis and successful treatment of the primary tumor, a phenomenon termed late recurrence. Metastases arise from disseminated tumor cells (DTCs) that leave the primary tumor early on in tumor development, either as single cells or clusters, adapt to new environments, and reduce or shut down their proliferation entering a state of dormancy for prolonged periods of time. Dormancy has been difficult to track clinically and study experimentally. Recent advances in technology and disease modeling have provided new insights into the molecular mechanisms orchestrating dormancy and the switch to a proliferative state. A new role for epithelial-mesenchymal transition (EMT) in inducing plasticity and maintaining a dormant state in several cancer models has been revealed. In this review, we summarize the major findings linking EMT to dormancy control and highlight the importance of pre-clinical models and tumor/tissue context when designing studies. Understanding of the cellular and molecular mechanisms controlling dormant DTCs is pivotal in developing new therapeutic agents that prevent distant recurrence by maintaining a dormant state.

Abstract Image

肿瘤休眠:EMT超越侵袭和转移。
超过三分之二的癌症相关死亡可归因于转移。在某些肿瘤类型中,转移最多可发生20 在诊断和成功治疗原发性肿瘤数年后,这种现象被称为晚期复发。转移源于播散性肿瘤细胞(DTC),这些细胞在肿瘤发展的早期以单细胞或簇的形式离开原发肿瘤,适应新的环境,并减少或停止其增殖,进入长期休眠状态。休眠在临床和实验上都很难追踪。技术和疾病建模的最新进展为休眠和向增殖状态转变的分子机制提供了新的见解。在几种癌症模型中,上皮-间质转化(EMT)在诱导可塑性和维持休眠状态中的新作用已被揭示。在这篇综述中,我们总结了将EMT与休眠控制联系起来的主要发现,并强调了临床前模型和肿瘤/组织背景在设计研究时的重要性。了解控制休眠DTC的细胞和分子机制对于开发通过维持休眠状态来防止远处复发的新治疗剂至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信