Robert J Hammack, Victoria E Fischer, Mary Ann Andrade, Glenn M Toney
{"title":"Presence of a remote fear memory engram in the central amygdala.","authors":"Robert J Hammack, Victoria E Fischer, Mary Ann Andrade, Glenn M Toney","doi":"10.1101/lm.053833.123","DOIUrl":null,"url":null,"abstract":"<p><p>Fear memory formation and recall are highly regulated processes, with the central amygdala (CeA) contributing to fear memory-related behaviors. We recently reported that a remote fear memory engram is resident in the anterior basolateral amygdala (aBLA). However, the extent to which downstream neurons in the CeA participate in this engram is unknown. We tested the hypothesis that CeA neurons activated during fear memory formation are reactivated during remote memory retrieval such that a CeA engram participates in remote fear memory recall and its associated behavior. Using contextual fear conditioning in TRAP2;Ai14 mice, we identified, by persistent Cre-dependent tdTomato expression (i.e., \"TRAPing\"), CeA neurons that were <i>c-fos</i>-activated during memory formation. Twenty-one days later, we quantified neurons activated during remote memory recall using Fos immunohistochemistry. Dual labeling was used to identify the subpopulation of CeA neurons that was both activated during memory formation and reactivated during recall. Compared with their context-conditioned (no shock) controls, fear-conditioned (electric shock) mice (<i>n</i> = 5/group) exhibited more robust fear memory-related behavior (freezing) as well as larger populations of activated (tdTomato<sup>+</sup>) and reactivated (dual-labeled) CeA neurons. Most neurons in both groups were mainly located in the capsular CeA subdivision (CeAC). Notably, however, only the size of the TRAPed population distributed throughout the CeA was significantly correlated with time spent freezing during remote fear memory recall. Our findings indicate that fear memory formation robustly activates CeA neurons and that a subset located mainly in the CeAC may contribute to both remote fear memory storage/retrieval and the resulting fear-like behavior.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 10","pages":"250-259"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.053833.123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fear memory formation and recall are highly regulated processes, with the central amygdala (CeA) contributing to fear memory-related behaviors. We recently reported that a remote fear memory engram is resident in the anterior basolateral amygdala (aBLA). However, the extent to which downstream neurons in the CeA participate in this engram is unknown. We tested the hypothesis that CeA neurons activated during fear memory formation are reactivated during remote memory retrieval such that a CeA engram participates in remote fear memory recall and its associated behavior. Using contextual fear conditioning in TRAP2;Ai14 mice, we identified, by persistent Cre-dependent tdTomato expression (i.e., "TRAPing"), CeA neurons that were c-fos-activated during memory formation. Twenty-one days later, we quantified neurons activated during remote memory recall using Fos immunohistochemistry. Dual labeling was used to identify the subpopulation of CeA neurons that was both activated during memory formation and reactivated during recall. Compared with their context-conditioned (no shock) controls, fear-conditioned (electric shock) mice (n = 5/group) exhibited more robust fear memory-related behavior (freezing) as well as larger populations of activated (tdTomato+) and reactivated (dual-labeled) CeA neurons. Most neurons in both groups were mainly located in the capsular CeA subdivision (CeAC). Notably, however, only the size of the TRAPed population distributed throughout the CeA was significantly correlated with time spent freezing during remote fear memory recall. Our findings indicate that fear memory formation robustly activates CeA neurons and that a subset located mainly in the CeAC may contribute to both remote fear memory storage/retrieval and the resulting fear-like behavior.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.