qGL3.4 controls kernel size and plant architecture in rice.

Q3 Medicine
遗传 Pub Date : 2023-09-20 DOI:10.16288/j.yczz.23-064
Zhen-Wu Zheng, Hong-Yuan Zhao, Xiao-Ya Liang, Yi-Jun Wang, Chi-Hang Wang, Gao-Yan Gong, Jin-Yan Huang, Gui-Quan Zhang, Shao-Kui Wang, Zu-Pei Liu
{"title":"<i>qGL3.4</i> controls kernel size and plant architecture in rice.","authors":"Zhen-Wu Zheng,&nbsp;Hong-Yuan Zhao,&nbsp;Xiao-Ya Liang,&nbsp;Yi-Jun Wang,&nbsp;Chi-Hang Wang,&nbsp;Gao-Yan Gong,&nbsp;Jin-Yan Huang,&nbsp;Gui-Quan Zhang,&nbsp;Shao-Kui Wang,&nbsp;Zu-Pei Liu","doi":"10.16288/j.yczz.23-064","DOIUrl":null,"url":null,"abstract":"<p><p>Kernel size and plant architecture play important roles in kernel yield in rice. Cloning and functional study of genes related to kernel size and plant architecture are of great significance for breeding high-yield rice. Using the single-segment substitution lines which developed with <i>Oryza barthii</i> as a donor parent and an elite <i>indica</i> cultivar Huajingxian74 (HJX74) as a recipient parent, we identified a novel QTL (quantitative trait locus), named <i>qGL3.4</i>, which controls kernel size and plant architecture. Compared with HJX74, the kernel length, kernel width, 1000-kernel weight, panicle length, kernels per plant, primary branches, yield per plant, and plant height of near isogenic line-<i>qGL3.4</i> (NIL-<i>qGL3.4</i>) are increased, whereas the panicles per plant and secondary branches per panicle of NIL-<i>qGL3.4</i> are comparable to those of HJX74. <i>qGL3.4</i> was narrowed to a 239.18 kb interval on chromosome 3. Cell analysis showed that NIL-<i>qGL3.4</i> controlled kernel size by regulating cell growth. <i>qGL3.4</i> controls kernel size at least in part through regulating the transcription levels of <i>EXPANSINS</i>, <i>GS3</i>, <i>GL3.1</i>, <i>PGL1</i>, <i>GL7</i>, <i>OsSPL13</i> and <i>GS5</i>. These results indicate that <i>qGL3.4</i> might be beneficial for improving kernel yield and plant architecture in rice breeding.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.23-064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Kernel size and plant architecture play important roles in kernel yield in rice. Cloning and functional study of genes related to kernel size and plant architecture are of great significance for breeding high-yield rice. Using the single-segment substitution lines which developed with Oryza barthii as a donor parent and an elite indica cultivar Huajingxian74 (HJX74) as a recipient parent, we identified a novel QTL (quantitative trait locus), named qGL3.4, which controls kernel size and plant architecture. Compared with HJX74, the kernel length, kernel width, 1000-kernel weight, panicle length, kernels per plant, primary branches, yield per plant, and plant height of near isogenic line-qGL3.4 (NIL-qGL3.4) are increased, whereas the panicles per plant and secondary branches per panicle of NIL-qGL3.4 are comparable to those of HJX74. qGL3.4 was narrowed to a 239.18 kb interval on chromosome 3. Cell analysis showed that NIL-qGL3.4 controlled kernel size by regulating cell growth. qGL3.4 controls kernel size at least in part through regulating the transcription levels of EXPANSINS, GS3, GL3.1, PGL1, GL7, OsSPL13 and GS5. These results indicate that qGL3.4 might be beneficial for improving kernel yield and plant architecture in rice breeding.

qGL3.4控制水稻的籽粒大小和植株结构。
水稻籽粒大小和植株结构对籽粒产量有重要影响。水稻籽粒大小和植株结构相关基因的克隆和功能研究对选育高产水稻具有重要意义。利用以大麦为供体亲本、优质籼稻品种华精显74(HJX74)为受体亲本建立的单片段代换系,我们鉴定了一个新的QTL(数量性状位点),命名为qGL3.4,它控制着稻米的粒径和植株结构。与HJX74相比,近等基因系-qGL3.4(NIL-qGL3.4)的粒长、粒宽、千粒重、穗长、单株粒数、一级分枝、单株产量和株高均有所提高,而NIL-qGL3.4的单株穗数和二级分枝数与HJX7相当。qGL3.4在3号染色体上的间隔缩小到239.18kb。细胞分析表明,NIL-qGL3.4通过调节细胞生长来控制粒径。qGL3.4至少部分通过调节EXPASINS、GS3、GL3.1、PGL1、GL7、OsSPL13和GS5的转录水平来控制籽粒大小。这些结果表明,qGL3.4可能有利于提高水稻育种中的籽粒产量和植株结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信