RNA editing catalytic complexes edit multiple mRNA sites non-processively in Trypanosoma brucei

IF 1.4 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jason Carnes , Suzanne M. McDermott , Kenneth Stuart
{"title":"RNA editing catalytic complexes edit multiple mRNA sites non-processively in Trypanosoma brucei","authors":"Jason Carnes ,&nbsp;Suzanne M. McDermott ,&nbsp;Kenneth Stuart","doi":"10.1016/j.molbiopara.2023.111596","DOIUrl":null,"url":null,"abstract":"<div><p>RNA editing generates mature mitochondrial mRNAs in <em>T. brucei</em> by extensive uridine insertion and deletion at numerous editing sites (ESs) as specified by guide RNAs (gRNAs). The editing is performed by three RNA Editing Catalytic Complexes (RECCs) which each have a different endonuclease in addition to 12 proteins in common resulting in RECC1 that is specific for deletion ESs and RECC2 and RECC3 that are specific for insertion ESs. Thus, different RECCs are required for editing of mRNA sequence regions where single gRNAs specify a combination of insertion and deletion ESs. We investigated how the three different RECCs might edit combinations of insertion and deletion ESs that are specified by single gRNAs by testing whether their endonuclease compositions are stable or dynamic during editing. We analyzed in vivo BirA* proximity labeling and found that the endonucleases remain associated with their set of common RECC proteins during editing when expressed at normal physiological levels. We also found that overexpression of endonuclease components resulted in minor effects on RECCs but did not affect growth. Thus, the protein stoichiometries that exist within each RECC can be altered by perturbations of RECC expression levels. These results indicate that editing of consecutive insertion and deletion ESs occurs by successive engagement and disengagement of RECCs, i.e., is non-processive, which is likely the case for consecutive pairs of insertion or deletion ESs. This clarifies the nature of the complex patterns of partially edited mRNAs that occur in vivo.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685123000543","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA editing generates mature mitochondrial mRNAs in T. brucei by extensive uridine insertion and deletion at numerous editing sites (ESs) as specified by guide RNAs (gRNAs). The editing is performed by three RNA Editing Catalytic Complexes (RECCs) which each have a different endonuclease in addition to 12 proteins in common resulting in RECC1 that is specific for deletion ESs and RECC2 and RECC3 that are specific for insertion ESs. Thus, different RECCs are required for editing of mRNA sequence regions where single gRNAs specify a combination of insertion and deletion ESs. We investigated how the three different RECCs might edit combinations of insertion and deletion ESs that are specified by single gRNAs by testing whether their endonuclease compositions are stable or dynamic during editing. We analyzed in vivo BirA* proximity labeling and found that the endonucleases remain associated with their set of common RECC proteins during editing when expressed at normal physiological levels. We also found that overexpression of endonuclease components resulted in minor effects on RECCs but did not affect growth. Thus, the protein stoichiometries that exist within each RECC can be altered by perturbations of RECC expression levels. These results indicate that editing of consecutive insertion and deletion ESs occurs by successive engagement and disengagement of RECCs, i.e., is non-processive, which is likely the case for consecutive pairs of insertion or deletion ESs. This clarifies the nature of the complex patterns of partially edited mRNAs that occur in vivo.

在布鲁氏锥虫中,RNA编辑催化复合物非加工性编辑多个mRNA位点。
RNA编辑通过在引导RNA(gRNA)指定的许多编辑位点(ES)上广泛插入和缺失尿苷,在布鲁氏菌中产生成熟的线粒体mRNA。编辑是由三种RNA编辑催化复合物(RECCs)进行的,除了12种共同的蛋白质外,每一种都具有不同的核酸内切酶,从而产生对缺失ES特异性的RECC1和对插入ES特异性的RECC2和RECC3。因此,需要不同的RECC来编辑mRNA序列区域,其中单个gRNA指定插入和缺失ES的组合。我们通过测试三种不同的RECC的核酸内切酶组成在编辑过程中是稳定的还是动态的,研究了它们如何编辑由单个gRNA指定的插入和缺失ES的组合。我们分析了体内BirA*邻近标记,发现当在正常生理水平下表达时,核酸内切酶在编辑过程中仍与其一组常见的RECC蛋白相关。我们还发现,核酸内切酶组分的过表达对RECCs的影响很小,但不影响生长。因此,存在于每个RECC内的蛋白质化学计量可以通过RECC表达水平的扰动来改变。这些结果表明,连续插入和删除ES的编辑是通过RECC的连续接合和脱离而发生的,即,是非处理性的,这可能是连续插入或删除ES对的情况。这阐明了体内发生的部分编辑的信使核糖核酸的复杂模式的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
51
审稿时长
63 days
期刊介绍: The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are: • the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances • intermediary metabolism and bioenergetics • drug target characterization and the mode of action of antiparasitic drugs • molecular and biochemical aspects of membrane structure and function • host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules. • analysis of genes and genome structure, function and expression • analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance. • parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules • parasite programmed cell death, development, and cell division at the molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信