Polymer properties of softwood organosolv lignins produced in two different reactor systems

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2023-10-05 DOI:10.1002/bip.23566
Prajin Joseph, Mihaela Tanase-Opedal, Størker T. Moe
{"title":"Polymer properties of softwood organosolv lignins produced in two different reactor systems","authors":"Prajin Joseph,&nbsp;Mihaela Tanase-Opedal,&nbsp;Størker T. Moe","doi":"10.1002/bip.23566","DOIUrl":null,"url":null,"abstract":"<p>Lignin, the second most abundant biopolymer on earth and with a predominantly aromatic structure, has the potential to be a raw material for valuable chemicals and other bio-based chemicals. In industry, lignin is underutilized by being used mostly as a fuel for producing thermal energy. Valorization of lignin requires knowledge of the structure and different linkages in the isolated lignin, making the study of structure of lignin important. In this article, lignin samples isolated from two types of reactors (autoclave reactor and displacement reactor) were analyzed by FT-IR, size exclusion chromatography, thermogravimetric analysis (TGA), and Py-GC-MS. The average molecular mass of the organosolv lignins isolated from the autoclave reactor decreased at higher severities, and FT-IR showed an increase in free phenolic content with increasing severity. Except for molecular mass and molecular mass dispersity, there were only minor differences between lignins isolated from the autoclave reactor and lignins isolated from the displacement reactor. Carbohydrate analysis, Py-GC–MS and TGA showed that the lignin isolated using either of the reactor systems is of high purity, suggesting that organosolv lignin is a good candidate for valorization.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23566","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23566","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin, the second most abundant biopolymer on earth and with a predominantly aromatic structure, has the potential to be a raw material for valuable chemicals and other bio-based chemicals. In industry, lignin is underutilized by being used mostly as a fuel for producing thermal energy. Valorization of lignin requires knowledge of the structure and different linkages in the isolated lignin, making the study of structure of lignin important. In this article, lignin samples isolated from two types of reactors (autoclave reactor and displacement reactor) were analyzed by FT-IR, size exclusion chromatography, thermogravimetric analysis (TGA), and Py-GC-MS. The average molecular mass of the organosolv lignins isolated from the autoclave reactor decreased at higher severities, and FT-IR showed an increase in free phenolic content with increasing severity. Except for molecular mass and molecular mass dispersity, there were only minor differences between lignins isolated from the autoclave reactor and lignins isolated from the displacement reactor. Carbohydrate analysis, Py-GC–MS and TGA showed that the lignin isolated using either of the reactor systems is of high purity, suggesting that organosolv lignin is a good candidate for valorization.

Abstract Image

Abstract Image

在两种不同的反应器系统中生产的软木有机溶剂木质素的聚合物性质。
木质素是地球上含量第二丰富的生物聚合物,具有主要的芳香结构,有可能成为有价值的化学品和其他生物基化学品的原料。在工业中,木质素未得到充分利用,主要用作生产热能的燃料。木质素的Valorization需要了解分离的木质素的结构和不同的键,因此对木质素结构的研究很重要。本文通过FT-IR、尺寸排阻色谱、热重分析(TGA)和Py-GC-MS对从两种反应器(高压釜反应器和置换反应器)中分离的木质素样品进行了分析。从高压釜反应器中分离的有机溶剂木质素的平均分子量在更高的严重程度下降低,并且FT-IR显示游离酚含量随着严重程度的增加而增加。除了分子质量和分子质量分散性外,从高压釜反应器中分离的木质素和从置换反应器中隔离的木质素之间只有微小的差异。碳水化合物分析、Py-GC-MS和TGA表明,使用任何一种反应器系统分离的木质素都是高纯度的,这表明有机溶剂木质素是很好的增值候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信