Using artificial intelligence to improve body iron quantification: A scoping review

IF 6.9 2区 医学 Q1 HEMATOLOGY
Abdulqadir J. Nashwan , Ibraheem M. Alkhawaldeh , Nour Shaheen , Ibrahem Albalkhi , Ibrahim Serag , Khalid Sarhan , Ahmad A. Abujaber , Alaa Abd-Alrazaq , Mohamed A. Yassin
{"title":"Using artificial intelligence to improve body iron quantification: A scoping review","authors":"Abdulqadir J. Nashwan ,&nbsp;Ibraheem M. Alkhawaldeh ,&nbsp;Nour Shaheen ,&nbsp;Ibrahem Albalkhi ,&nbsp;Ibrahim Serag ,&nbsp;Khalid Sarhan ,&nbsp;Ahmad A. Abujaber ,&nbsp;Alaa Abd-Alrazaq ,&nbsp;Mohamed A. Yassin","doi":"10.1016/j.blre.2023.101133","DOIUrl":null,"url":null,"abstract":"<div><p>This scoping review explores the potential of artificial intelligence (AI) in enhancing the screening, diagnosis, and monitoring of disorders related to body iron levels. A systematic search was performed to identify studies that utilize machine learning in iron-related disorders. The search revealed a wide range of machine learning algorithms used by different studies. Notably, most studies used a single data type. The studies varied in terms of sample sizes, participant ages, and geographical locations. AI's role in quantifying iron concentration is still in its early stages, yet its potential is significant. The question is whether AI-based diagnostic biomarkers can offer innovative approaches for screening, diagnosing, and monitoring of iron overload and anemia.</p></div>","PeriodicalId":56139,"journal":{"name":"Blood Reviews","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0268960X23000942/pdfft?md5=d1aa59a1ac0d1524c1ccb1e865d7ec78&pid=1-s2.0-S0268960X23000942-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268960X23000942","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This scoping review explores the potential of artificial intelligence (AI) in enhancing the screening, diagnosis, and monitoring of disorders related to body iron levels. A systematic search was performed to identify studies that utilize machine learning in iron-related disorders. The search revealed a wide range of machine learning algorithms used by different studies. Notably, most studies used a single data type. The studies varied in terms of sample sizes, participant ages, and geographical locations. AI's role in quantifying iron concentration is still in its early stages, yet its potential is significant. The question is whether AI-based diagnostic biomarkers can offer innovative approaches for screening, diagnosing, and monitoring of iron overload and anemia.

利用人工智能提高人体铁含量:范围界定综述。
这篇范围综述探讨了人工智能(AI)在加强与身体铁水平相关的疾病的筛查、诊断和监测方面的潜力。进行了一项系统搜索,以确定在铁相关疾病中利用机器学习的研究。该搜索揭示了不同研究所使用的广泛的机器学习算法。值得注意的是,大多数研究都使用了单一的数据类型。研究的样本量、参与者年龄和地理位置各不相同。人工智能在量化铁浓度方面的作用仍处于早期阶段,但其潜力巨大。问题是基于人工智能的诊断生物标志物能否为铁过载和贫血的筛查、诊断和监测提供创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Blood Reviews
Blood Reviews 医学-血液学
CiteScore
13.80
自引率
1.40%
发文量
78
期刊介绍: Blood Reviews, a highly regarded international journal, serves as a vital information hub, offering comprehensive evaluations of clinical practices and research insights from esteemed experts. Specially commissioned, peer-reviewed articles authored by leading researchers and practitioners ensure extensive global coverage across all sub-specialties of hematology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信