On generalizations of the nonwindowed scattering transform

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Albert Chua , Matthew Hirn , Anna Little
{"title":"On generalizations of the nonwindowed scattering transform","authors":"Albert Chua ,&nbsp;Matthew Hirn ,&nbsp;Anna Little","doi":"10.1016/j.acha.2023.101597","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we generalize finite depth wavelet scattering transforms, which we formulate as <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span><span> norms of a cascade of continuous wavelet transforms (or dyadic wavelet transforms) and contractive nonlinearities. We then provide norms for these operators, prove that these operators are well-defined, and are Lipschitz continuous to the action of </span><span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span> diffeomorphisms<span> in specific cases. Lastly, we extend our results to formulate an operator invariant to the action of rotations </span></span><span><math><mi>R</mi><mo>∈</mo><mtext>SO</mtext><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and an operator that is equivariant to the action of rotations of <span><math><mi>R</mi><mo>∈</mo><mtext>SO</mtext><mo>(</mo><mi>n</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101597"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000842","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we generalize finite depth wavelet scattering transforms, which we formulate as Lq(Rn) norms of a cascade of continuous wavelet transforms (or dyadic wavelet transforms) and contractive nonlinearities. We then provide norms for these operators, prove that these operators are well-defined, and are Lipschitz continuous to the action of C2 diffeomorphisms in specific cases. Lastly, we extend our results to formulate an operator invariant to the action of rotations RSO(n) and an operator that is equivariant to the action of rotations of RSO(n).

关于无窗散射变换的推广。
在本文中,我们推广了有限深度小波散射变换,我们将其公式化为Lq(ℝn) 连续小波变换(或二进小波变换)和压缩非线性的级联的范数。然后我们给出了这些算子的范数,证明了这些算子是定义明确的,并且在特定情况下对C2微分同胚的作用是Lipschitz连续的。最后,我们将我们的结果推广到公式化一个对旋转作用R∈SO(n)不变的算子和一个对R∈SO(n)的旋转作用等变的算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信