{"title":"Sleep-related benefits to transitive inference are modulated by encoding strength and joint rank.","authors":"Tamas Foldes, Lorena Santamaria, Penny Lewis","doi":"10.1101/lm.053787.123","DOIUrl":null,"url":null,"abstract":"<p><p>Transitive inference is a measure of relational learning that has been shown to improve across sleep. Here, we examine this phenomenon further by studying the impact of encoding strength and joint rank. In experiment 1, participants learned adjacent premise pairs and were then tested on inferential problems derived from those pairs. In line with prior work, we found improved transitive inference performance after retention across a night of sleep compared with wake alone. Experiment 2 extended these findings using a within-subject design and found superior transitive inference performance on a hierarchy, consolidated across 27 h including sleep compared with just 3 h of wake. In both experiments, consolidation-related improvement was enhanced when presleep learning (i.e., encoding strength) was stronger. We also explored the interaction of these effects with the joint rank effect, in which items were scored according to their rank in the hierarchy, with more dominant item pairs having the lowest scores. Interestingly, the consolidation-related benefit was greatest for more dominant inference pairs (i.e., those with low joint rank scores). Overall, our findings provide further support for the improvement of transitive inference across a consolidation period that includes sleep. We additionally show that encoding strength and joint rank strongly modulate this effect.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 9","pages":"201-211"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.053787.123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transitive inference is a measure of relational learning that has been shown to improve across sleep. Here, we examine this phenomenon further by studying the impact of encoding strength and joint rank. In experiment 1, participants learned adjacent premise pairs and were then tested on inferential problems derived from those pairs. In line with prior work, we found improved transitive inference performance after retention across a night of sleep compared with wake alone. Experiment 2 extended these findings using a within-subject design and found superior transitive inference performance on a hierarchy, consolidated across 27 h including sleep compared with just 3 h of wake. In both experiments, consolidation-related improvement was enhanced when presleep learning (i.e., encoding strength) was stronger. We also explored the interaction of these effects with the joint rank effect, in which items were scored according to their rank in the hierarchy, with more dominant item pairs having the lowest scores. Interestingly, the consolidation-related benefit was greatest for more dominant inference pairs (i.e., those with low joint rank scores). Overall, our findings provide further support for the improvement of transitive inference across a consolidation period that includes sleep. We additionally show that encoding strength and joint rank strongly modulate this effect.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.