Naturalistic reinforcement learning.

IF 16.7 1区 心理学 Q1 BEHAVIORAL SCIENCES
Trends in Cognitive Sciences Pub Date : 2024-02-01 Epub Date: 2023-09-29 DOI:10.1016/j.tics.2023.08.016
Toby Wise, Kara Emery, Angela Radulescu
{"title":"Naturalistic reinforcement learning.","authors":"Toby Wise, Kara Emery, Angela Radulescu","doi":"10.1016/j.tics.2023.08.016","DOIUrl":null,"url":null,"abstract":"<p><p>Humans possess a remarkable ability to make decisions within real-world environments that are expansive, complex, and multidimensional. Human cognitive computational neuroscience has sought to exploit reinforcement learning (RL) as a framework within which to explain human decision-making, often focusing on constrained, artificial experimental tasks. In this article, we review recent efforts that use naturalistic approaches to determine how humans make decisions in complex environments that better approximate the real world, providing a clearer picture of how humans navigate the challenges posed by real-world decisions. These studies purposely embed elements of naturalistic complexity within experimental paradigms, rather than focusing on simplification, generating insights into the processes that likely underpin humans' ability to navigate complex, multidimensional real-world environments so successfully.</p>","PeriodicalId":49417,"journal":{"name":"Trends in Cognitive Sciences","volume":null,"pages":null},"PeriodicalIF":16.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cognitive Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.tics.2023.08.016","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Humans possess a remarkable ability to make decisions within real-world environments that are expansive, complex, and multidimensional. Human cognitive computational neuroscience has sought to exploit reinforcement learning (RL) as a framework within which to explain human decision-making, often focusing on constrained, artificial experimental tasks. In this article, we review recent efforts that use naturalistic approaches to determine how humans make decisions in complex environments that better approximate the real world, providing a clearer picture of how humans navigate the challenges posed by real-world decisions. These studies purposely embed elements of naturalistic complexity within experimental paradigms, rather than focusing on simplification, generating insights into the processes that likely underpin humans' ability to navigate complex, multidimensional real-world environments so successfully.

自然主义强化学习。
人类拥有在广阔、复杂和多维的现实世界环境中做出决策的非凡能力。人类认知计算神经科学试图利用强化学习(RL)作为解释人类决策的框架,通常侧重于受约束的人工实验任务。在这篇文章中,我们回顾了最近使用自然主义方法来确定人类如何在更接近现实世界的复杂环境中做出决策的努力,从而更清楚地了解人类如何应对现实世界决策带来的挑战。这些研究有意将自然主义复杂性的元素嵌入实验范式中,而不是专注于简化,从而深入了解可能支撑人类成功驾驭复杂、多维现实世界环境的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Cognitive Sciences
Trends in Cognitive Sciences 医学-行为科学
CiteScore
27.90
自引率
1.50%
发文量
156
审稿时长
6-12 weeks
期刊介绍: Essential reading for those working directly in the cognitive sciences or in related specialist areas, Trends in Cognitive Sciences provides an instant overview of current thinking for scientists, students and teachers who want to keep up with the latest developments in the cognitive sciences. The journal brings together research in psychology, artificial intelligence, linguistics, philosophy, computer science and neuroscience. Trends in Cognitive Sciences provides a platform for the interaction of these disciplines and the evolution of cognitive science as an independent field of study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信