{"title":"Effect of <i>TRAF6</i>-knockout on gene expression and lncRNA expression in <i>Epithelioma papulosum cyprini</i> (EPC) cells.","authors":"Najib Abdellaoui, Seon Young Kim, Min Sun Kim","doi":"10.1080/19768354.2023.2263070","DOIUrl":null,"url":null,"abstract":"<p><p><i>TRAF6</i> is a key immune gene that plays a significant role in toll-like receptor signal transduction and activates downstream immune genes involved in antiviral immunity in fish. To explore the role of TRAF6 in <i>Epithelioma papulosum cyprini</i> (EPC) cells, we knocked out the <i>TRAF6</i> gene using the Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 (CRISPR-Cas9) technique and then analyzed the transcriptomes of the knockout cells. In this study, we identified that 232 transcripts were differentially expressed in naive cells. Using the pipeline, we identified 381 novel lncRNAs in EPC cells, 23 of which were differentially expressed. Gene Ontology enrichment analysis demonstrated that differentially expressed genes (DEG) are implicated in various immune processes, such as neutrophil chemotaxis and mitogen-activated protein kinase binding. In addition, the KEGG pathway analysis revealed enrichment in immune-related pathways (Interleukin-17 signaling pathway, cytokine-cytokine receptor interaction, and TNF signaling pathway). Furthermore, the target genes of the differentially expressed lncRNAs were implicated in the negative regulation of interleukin-6 and tumor necrosis factor production. These results indicate that lncRNAs and protein-coding genes participate in the regulation of immune and metabolic processes in fish.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2023.2263070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
TRAF6 is a key immune gene that plays a significant role in toll-like receptor signal transduction and activates downstream immune genes involved in antiviral immunity in fish. To explore the role of TRAF6 in Epithelioma papulosum cyprini (EPC) cells, we knocked out the TRAF6 gene using the Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 (CRISPR-Cas9) technique and then analyzed the transcriptomes of the knockout cells. In this study, we identified that 232 transcripts were differentially expressed in naive cells. Using the pipeline, we identified 381 novel lncRNAs in EPC cells, 23 of which were differentially expressed. Gene Ontology enrichment analysis demonstrated that differentially expressed genes (DEG) are implicated in various immune processes, such as neutrophil chemotaxis and mitogen-activated protein kinase binding. In addition, the KEGG pathway analysis revealed enrichment in immune-related pathways (Interleukin-17 signaling pathway, cytokine-cytokine receptor interaction, and TNF signaling pathway). Furthermore, the target genes of the differentially expressed lncRNAs were implicated in the negative regulation of interleukin-6 and tumor necrosis factor production. These results indicate that lncRNAs and protein-coding genes participate in the regulation of immune and metabolic processes in fish.