{"title":"Differentiating Macrovascular and Microvascular Ischemia Using Fractal Analysis of Dynamic Myocardial Perfusion Stress-CT.","authors":"Florian Michallek, Satoshi Nakamura, Tairo Kurita, Hideki Ota, Kensuke Nishimiya, Ryo Ogawa, Takehito Shizuka, Hitoshi Nakashima, Yi-Ning Wang, Tatsuro Ito, Hajime Sakuma, Marc Dewey, Kakuya Kitagawa","doi":"10.1097/RLI.0000000000001027","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Fractal analysis of dynamic myocardial stress computed tomography perfusion imaging (4D-CTP) has shown potential to noninvasively differentiate obstructive coronary artery disease (CAD) and coronary microvascular disease (CMD). This study validates fractal analysis of 4D-CTP in a multicenter setting and assesses its diagnostic accuracy in subgroups with ischemia and nonobstructed coronary arteries (INOCA) and with mild to moderate stenosis.</p><p><strong>Materials and methods: </strong>From the AMPLIFiED multicenter trial, patients with suspected or known chronic myocardial ischemia and an indication for invasive coronary angiography were included. Patients underwent dual-source CT angiography, 4D-CTP, and CT delayed-enhancement imaging. Coronary artery disease, CMD, and normal perfusion were defined by a combined reference standard comprising invasive coronary angiography with fractional flow reserve, and absolute or relative CT-derived myocardial blood flow. Nonobstructed coronary arteries were defined as ≤25% stenosis and mild to moderate stenosis as 26%-80%.</p><p><strong>Results: </strong>In 127 patients (27% female), fractal analysis accurately differentiated CAD (n = 61, 23% female), CMD (n = 23, 30% female), and normal perfusion (n = 34, 35% female) with a multiclass area under the receiver operating characteristic curve (AUC) of 0.92 and high agreement (multiclass κ = 0.89). In patients with ischemia (n = 84), fractal analysis detected CAD (n = 61) over CMD (n = 23) with sensitivity of 95%, specificity of 74%, accuracy of 89%, and AUC of 0.83. In patients with nonobstructed coronary arteries (n = 33), INOCA (n = 15) was detected with sensitivity of 100%, specificity of 78%, accuracy of 88%, and AUC of 0.94. In patients with mild to moderate stenosis (n = 27), fractal analysis detected CAD (n = 19) over CMD with sensitivity of 84%, specificity of 100%, accuracy of 89%, and AUC of 0.95.</p><p><strong>Conclusions: </strong>In this multicenter study, fractal analysis of 4D-CTP accurately differentiated CAD and CMD including subgroups with INOCA and with mild to moderate stenosis.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"413-423"},"PeriodicalIF":7.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001027","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Fractal analysis of dynamic myocardial stress computed tomography perfusion imaging (4D-CTP) has shown potential to noninvasively differentiate obstructive coronary artery disease (CAD) and coronary microvascular disease (CMD). This study validates fractal analysis of 4D-CTP in a multicenter setting and assesses its diagnostic accuracy in subgroups with ischemia and nonobstructed coronary arteries (INOCA) and with mild to moderate stenosis.
Materials and methods: From the AMPLIFiED multicenter trial, patients with suspected or known chronic myocardial ischemia and an indication for invasive coronary angiography were included. Patients underwent dual-source CT angiography, 4D-CTP, and CT delayed-enhancement imaging. Coronary artery disease, CMD, and normal perfusion were defined by a combined reference standard comprising invasive coronary angiography with fractional flow reserve, and absolute or relative CT-derived myocardial blood flow. Nonobstructed coronary arteries were defined as ≤25% stenosis and mild to moderate stenosis as 26%-80%.
Results: In 127 patients (27% female), fractal analysis accurately differentiated CAD (n = 61, 23% female), CMD (n = 23, 30% female), and normal perfusion (n = 34, 35% female) with a multiclass area under the receiver operating characteristic curve (AUC) of 0.92 and high agreement (multiclass κ = 0.89). In patients with ischemia (n = 84), fractal analysis detected CAD (n = 61) over CMD (n = 23) with sensitivity of 95%, specificity of 74%, accuracy of 89%, and AUC of 0.83. In patients with nonobstructed coronary arteries (n = 33), INOCA (n = 15) was detected with sensitivity of 100%, specificity of 78%, accuracy of 88%, and AUC of 0.94. In patients with mild to moderate stenosis (n = 27), fractal analysis detected CAD (n = 19) over CMD with sensitivity of 84%, specificity of 100%, accuracy of 89%, and AUC of 0.95.
Conclusions: In this multicenter study, fractal analysis of 4D-CTP accurately differentiated CAD and CMD including subgroups with INOCA and with mild to moderate stenosis.
期刊介绍:
Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.