Grzegorz Sowa, Agnieszka J Bednarska, Ryszard Laskowski
{"title":"Effects of agricultural landscape structure and canola coverage on biochemical and physiological traits of the ground beetle Poecilus cupreus.","authors":"Grzegorz Sowa, Agnieszka J Bednarska, Ryszard Laskowski","doi":"10.1007/s10646-023-02701-3","DOIUrl":null,"url":null,"abstract":"<p><p>The intensifications in the agricultural landscape and the application of pesticides can cause adverse effects on the fitness of organisms in that landscape. Here, we investigated whether habitats with different agricultural pressures influenced acetylcholinesterase (AChE) activity - a biomarker for exposure to pesticides, respiration rate, and resistance to starvation in the ground beetle Poecilus cupreus. Two differently structured landscapes were selected for the study, one dominated by small (S) and another by large (L) fields. Within each landscape three habitat types were selected: in the S landscape, these were habitats with medium (M), small (S) and no canola (meadow, 0) coverage (i.e., SM, SS, S0), and in the L landscape habitats with large (L), medium (M) and no canola (meadow, 0) coverage (i.e., LL, LM, L0), representing different levels of agricultural pressure. The activity of AChE was the highest in beetles from canola-free habitats (S0 and L0), being significantly higher than in beetles from the SM and SS habitats. The mean respiration rate corrected for body mass was also the highest in S0 and L0 beetles, with significant differences between populations from L0 vs. SS and from S0 vs. SS. Only beetles from S0, SS, L0, and LM were numerous enough to assess the resistance to starvation. Individuals from the LM habitat showed better survival compared to the canola-free habitat in the same landscape (L0), whereas in S landscape the SS beetles survived worse than those from S0, suggesting that characteristics of L landscape may lead to developing mechanisms of starvation resistance of P. cupreus in response to agricultural pressure.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"1141-1151"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684619/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-023-02701-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intensifications in the agricultural landscape and the application of pesticides can cause adverse effects on the fitness of organisms in that landscape. Here, we investigated whether habitats with different agricultural pressures influenced acetylcholinesterase (AChE) activity - a biomarker for exposure to pesticides, respiration rate, and resistance to starvation in the ground beetle Poecilus cupreus. Two differently structured landscapes were selected for the study, one dominated by small (S) and another by large (L) fields. Within each landscape three habitat types were selected: in the S landscape, these were habitats with medium (M), small (S) and no canola (meadow, 0) coverage (i.e., SM, SS, S0), and in the L landscape habitats with large (L), medium (M) and no canola (meadow, 0) coverage (i.e., LL, LM, L0), representing different levels of agricultural pressure. The activity of AChE was the highest in beetles from canola-free habitats (S0 and L0), being significantly higher than in beetles from the SM and SS habitats. The mean respiration rate corrected for body mass was also the highest in S0 and L0 beetles, with significant differences between populations from L0 vs. SS and from S0 vs. SS. Only beetles from S0, SS, L0, and LM were numerous enough to assess the resistance to starvation. Individuals from the LM habitat showed better survival compared to the canola-free habitat in the same landscape (L0), whereas in S landscape the SS beetles survived worse than those from S0, suggesting that characteristics of L landscape may lead to developing mechanisms of starvation resistance of P. cupreus in response to agricultural pressure.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.