Features of the Structure and Formation of Dislocations in the Section of the Mikulinsky (
\({\text{Q}}_{3}^{1}\)
) Lacustrine Sediments of the Dmitrov Quarry (Moscow Region)
{"title":"Features of the Structure and Formation of Dislocations in the Section of the Mikulinsky (\n \\({\\text{Q}}_{3}^{1}\\)\n ) Lacustrine Sediments of the Dmitrov Quarry (Moscow Region)","authors":"E. S. Gorbatov, S. F. Kolesnikov, A. A. Rasskazov","doi":"10.3103/S074792392204003X","DOIUrl":null,"url":null,"abstract":"<p>A complex of dislocations is described (extended gently dipping faults with a displacement of up to 1 m, dipping towards the center of the lens, steep faults with displacements of 5–20 cm), liquefaction structures (angular pseudonodules of sands in silts), near fault and near-strike-slip fault folds in the section of a large lens of the Mikulinskiy lacustrine–bog sediments (interbedded silt with a horizon of peat and clayey gyttja) of the aseismic region of the Russian Plate (Klin–Dmitrov ridge) in order to compare them with similar structures of the Baltic Shield, the seismogenicity of which is being discussed. It has been shown that the sequence was not subjected to periglacial phenomena such as glaciotectonics, glaciokarst, cryogenic deformations, the presence of which and pseudomorphism along polygonal-veined ice was noted only in the roof of the Mikulinskiy interglacial complex. A model is proposed for the formation of dislocations as a result of slumping of a silt layer with uneven subsidence of the underlying layers of peat sediments, which have been strongly compacted during lithogenesis, which explains the features of the kinematics of faults. The results showed that the dislocations of the Mikulinsky complexes of the Dmitrov quarry do not fundamentally differ from similar structures of the Baltic Shield, which confirms their lithogenic or exogenic (rather than seismotectonic) genesis in both regions. The differences in the dislocation complexes of the two regions are in the different sequence of formation of liquefaction and faults structures: in the Dmitrov section, they were formed synchronously, in the sections of the Baltic Shield, asynchronously.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 4","pages":"473 - 484"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismic Instruments","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S074792392204003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A complex of dislocations is described (extended gently dipping faults with a displacement of up to 1 m, dipping towards the center of the lens, steep faults with displacements of 5–20 cm), liquefaction structures (angular pseudonodules of sands in silts), near fault and near-strike-slip fault folds in the section of a large lens of the Mikulinskiy lacustrine–bog sediments (interbedded silt with a horizon of peat and clayey gyttja) of the aseismic region of the Russian Plate (Klin–Dmitrov ridge) in order to compare them with similar structures of the Baltic Shield, the seismogenicity of which is being discussed. It has been shown that the sequence was not subjected to periglacial phenomena such as glaciotectonics, glaciokarst, cryogenic deformations, the presence of which and pseudomorphism along polygonal-veined ice was noted only in the roof of the Mikulinskiy interglacial complex. A model is proposed for the formation of dislocations as a result of slumping of a silt layer with uneven subsidence of the underlying layers of peat sediments, which have been strongly compacted during lithogenesis, which explains the features of the kinematics of faults. The results showed that the dislocations of the Mikulinsky complexes of the Dmitrov quarry do not fundamentally differ from similar structures of the Baltic Shield, which confirms their lithogenic or exogenic (rather than seismotectonic) genesis in both regions. The differences in the dislocation complexes of the two regions are in the different sequence of formation of liquefaction and faults structures: in the Dmitrov section, they were formed synchronously, in the sections of the Baltic Shield, asynchronously.
期刊介绍:
Seismic Instruments is a journal devoted to the description of geophysical instruments used in seismic research. In addition to covering the actual instruments for registering seismic waves, substantial room is devoted to solving instrumental-methodological problems of geophysical monitoring, applying various methods that are used to search for earthquake precursors, to studying earthquake nucleation processes and to monitoring natural and technogenous processes. The description of the construction, working elements, and technical characteristics of the instruments, as well as some results of implementation of the instruments and interpretation of the results are given. Attention is paid to seismic monitoring data and earthquake catalog quality Analysis.