Anastasi Kosmadopoulos, Philippe Boudreau, Laura Kervezee, Diane B Boivin
{"title":"Circadian Adaptation of Melatonin and Cortisol in Police Officers Working Rotating Shifts.","authors":"Anastasi Kosmadopoulos, Philippe Boudreau, Laura Kervezee, Diane B Boivin","doi":"10.1177/07487304231196280","DOIUrl":null,"url":null,"abstract":"<p><p>Misalignment of behavior and circadian rhythms due to night work can impair sleep and waking function. While both simulated and field-based studies suggest that circadian adaptation to a nocturnal schedule is slow, the rates of adaptation in real-world shift-work conditions are still largely unknown. The aim of this study was to evaluate the extent of adaptation of 24-h rhythms with 6-sulfatoxymelatonin (aMT6s) and cortisol in police officers working rotating shifts, with a special attention to night shifts. A total of 76 police officers (20 women; aged 32 ± 5.4 years, mean ± SD) from the province of Quebec, Canada, participated in a field study during their 28- or 35-day work cycle. Urine samples were collected for ~32 h before a series of day, evening, and night shifts to assess circadian phase. Before day, evening, and night shifts, 60%-89% of officers were adapted to a day schedule based on aMT6 rhythms, and 71%-78% were adapted based on cortisol rhythms. To further quantify the rate of circadian adaptation to night shifts, initial and final phases were determined in a subset of 37 officers with suitable rhythms for both hormones before and after 3-8 consecutive shifts (median = 7). Data were analyzed with circular and linear mixed-effects models. After night shifts, 30% and 24% of officers were adapted to a night-oriented schedule for aMT6s and cortisol, respectively. Significantly larger phase-delay shifts (aMT6s: -7.3 ± 0.9 h; cortisol: -6.3 ± 0.8 h) were observed in police officers who adapted to night shifts than in non-adapted officers (aMT6s: 0.8 ± 0.9 h; cortisol: 0.2 ± 1.1 h). Consistent with prior research, our results from both urinary aMT6s and cortisol midpoints indicate that a large proportion of police officers remained in a state of circadian misalignment following a series of night shifts in dim-light working environments.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785562/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Rhythms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/07487304231196280","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Misalignment of behavior and circadian rhythms due to night work can impair sleep and waking function. While both simulated and field-based studies suggest that circadian adaptation to a nocturnal schedule is slow, the rates of adaptation in real-world shift-work conditions are still largely unknown. The aim of this study was to evaluate the extent of adaptation of 24-h rhythms with 6-sulfatoxymelatonin (aMT6s) and cortisol in police officers working rotating shifts, with a special attention to night shifts. A total of 76 police officers (20 women; aged 32 ± 5.4 years, mean ± SD) from the province of Quebec, Canada, participated in a field study during their 28- or 35-day work cycle. Urine samples were collected for ~32 h before a series of day, evening, and night shifts to assess circadian phase. Before day, evening, and night shifts, 60%-89% of officers were adapted to a day schedule based on aMT6 rhythms, and 71%-78% were adapted based on cortisol rhythms. To further quantify the rate of circadian adaptation to night shifts, initial and final phases were determined in a subset of 37 officers with suitable rhythms for both hormones before and after 3-8 consecutive shifts (median = 7). Data were analyzed with circular and linear mixed-effects models. After night shifts, 30% and 24% of officers were adapted to a night-oriented schedule for aMT6s and cortisol, respectively. Significantly larger phase-delay shifts (aMT6s: -7.3 ± 0.9 h; cortisol: -6.3 ± 0.8 h) were observed in police officers who adapted to night shifts than in non-adapted officers (aMT6s: 0.8 ± 0.9 h; cortisol: 0.2 ± 1.1 h). Consistent with prior research, our results from both urinary aMT6s and cortisol midpoints indicate that a large proportion of police officers remained in a state of circadian misalignment following a series of night shifts in dim-light working environments.
期刊介绍:
Journal of Biological Rhythms is the official journal of the Society for Research on Biological Rhythms and offers peer-reviewed original research in all aspects of biological rhythms, using genetic, biochemical, physiological, behavioral, epidemiological & modeling approaches, as well as clinical trials. Emphasis is on circadian and seasonal rhythms, but timely reviews and research on other periodicities are also considered. The journal is a member of the Committee on Publication Ethics (COPE).