Oskar Vilhelmsson Timmermand, Marcella Safi, Bo Holmqvist, Joanna Strand
{"title":"Evaluation of enhanced permeability effect and different linear energy transfer of radionuclides in a prostate cancer xenograft model.","authors":"Oskar Vilhelmsson Timmermand, Marcella Safi, Bo Holmqvist, Joanna Strand","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously investigated the biodistribution and therapy effect of a humanized monoclonal antibody targeting free prostate-specific antigen (fPSA) intended for theranostics of hormone-refractory prostate cancer. In the present study, we evaluated the off-target effect and different linear energy transfer (LET) radionuclides without the effect of PSA targeting by using an antibody with the same scaffold as previously used immunoconjugates but with random, non-specific, antigen binding region. This allows us to identify alterations generated by specific targeting and those related to passive bystander effects, such as enhanced permeability and retention (EPR). A control humanized IgG monoclonal antibody (hIgG1) and an isotype control IgG monoclonal antibody were conjugated with the chelator CHX-A\"-DTPA. The immunoconjugate was radiolabeled with either Lutetium-177 ([<sup>177</sup>Lu]Lu) or Indium-111 ([<sup>111</sup>In]In). A biodistribution study in mice carrying LNCaP xenografts, was performed to evaluate the non-specific uptake of [<sup>177</sup>Lu]Lu-hIgG1 in tumors and normal organs. Further, therapy studies of [<sup>177</sup>Lu]Lu and [<sup>111</sup>In]In labeled IgG were performed in BALB/c mice carrying LNCaP xenografts. Tumor tissues of treated xenografts and control were sectioned and immunohistochemically stained for Ki67 and PSA. The highest tumor uptake for the [<sup>177</sup>Lu]Lu-hIgG1 was seen at 72 hours (7.2±2 %IA/g), when comparing the tumor uptake of the fPSA targeting antibody to the non-specific antibody, the non-specific antibody contributes to half of the tumor uptake at 72 h. The liver uptake was 3.1±0.5 %IA/g at 24 h, 2.8±0.5 %IA/g at 72 h and 1.3±0.6 %IA/g at 120 h in LNCaP xenografts, which was approximately three times lower at 24 h and two times lower at 72 h than for the antibody with preserved targeting. Immunohistochemical labeling showed a reduction of PSA expression and a reduction of Ki67 labeled cells in the [<sup>111</sup>In]In treated LNCaP tumors, compared to vehicle and [<sup>177</sup>Lu]Lu treated mice. In conclusion, we found that specific targeting might negatively influence normal organ uptake when targeting secreted antigens. Furthermore, different energy deposition i.e. linear energy transfer of a radionuclide might have diverse effects on receptor expression and cell proliferation in tumors.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"13 4","pages":"147-155"},"PeriodicalIF":2.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509292/pdf/ajnmmi0013-0147.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of nuclear medicine and molecular imaging","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
We have previously investigated the biodistribution and therapy effect of a humanized monoclonal antibody targeting free prostate-specific antigen (fPSA) intended for theranostics of hormone-refractory prostate cancer. In the present study, we evaluated the off-target effect and different linear energy transfer (LET) radionuclides without the effect of PSA targeting by using an antibody with the same scaffold as previously used immunoconjugates but with random, non-specific, antigen binding region. This allows us to identify alterations generated by specific targeting and those related to passive bystander effects, such as enhanced permeability and retention (EPR). A control humanized IgG monoclonal antibody (hIgG1) and an isotype control IgG monoclonal antibody were conjugated with the chelator CHX-A"-DTPA. The immunoconjugate was radiolabeled with either Lutetium-177 ([177Lu]Lu) or Indium-111 ([111In]In). A biodistribution study in mice carrying LNCaP xenografts, was performed to evaluate the non-specific uptake of [177Lu]Lu-hIgG1 in tumors and normal organs. Further, therapy studies of [177Lu]Lu and [111In]In labeled IgG were performed in BALB/c mice carrying LNCaP xenografts. Tumor tissues of treated xenografts and control were sectioned and immunohistochemically stained for Ki67 and PSA. The highest tumor uptake for the [177Lu]Lu-hIgG1 was seen at 72 hours (7.2±2 %IA/g), when comparing the tumor uptake of the fPSA targeting antibody to the non-specific antibody, the non-specific antibody contributes to half of the tumor uptake at 72 h. The liver uptake was 3.1±0.5 %IA/g at 24 h, 2.8±0.5 %IA/g at 72 h and 1.3±0.6 %IA/g at 120 h in LNCaP xenografts, which was approximately three times lower at 24 h and two times lower at 72 h than for the antibody with preserved targeting. Immunohistochemical labeling showed a reduction of PSA expression and a reduction of Ki67 labeled cells in the [111In]In treated LNCaP tumors, compared to vehicle and [177Lu]Lu treated mice. In conclusion, we found that specific targeting might negatively influence normal organ uptake when targeting secreted antigens. Furthermore, different energy deposition i.e. linear energy transfer of a radionuclide might have diverse effects on receptor expression and cell proliferation in tumors.
期刊介绍:
The scope of AJNMMI encompasses all areas of molecular imaging, including but not limited to: positron emission tomography (PET), single-photon emission computed tomography (SPECT), molecular magnetic resonance imaging, magnetic resonance spectroscopy, optical bioluminescence, optical fluorescence, targeted ultrasound, photoacoustic imaging, etc. AJNMMI welcomes original and review articles on both clinical investigation and preclinical research. Occasionally, special topic issues, short communications, editorials, and invited perspectives will also be published. Manuscripts, including figures and tables, must be original and not under consideration by another journal.