How do real animals account for the passage of time during associative learning?

IF 1.6 4区 医学 Q3 BEHAVIORAL SCIENCES
Behavioral neuroscience Pub Date : 2022-10-01 Epub Date: 2022-04-28 DOI:10.1037/bne0000516
Vijay Mohan K Namboodiri
{"title":"How do real animals account for the passage of time during associative learning?","authors":"Vijay Mohan K Namboodiri","doi":"10.1037/bne0000516","DOIUrl":null,"url":null,"abstract":"<p><p>Animals routinely learn to associate environmental stimuli and self-generated actions with their outcomes such as rewards. One of the most popular theoretical models of such learning is the reinforcement learning (RL) framework. The simplest form of RL, model-free RL, is widely applied to explain animal behavior in numerous neuroscientific studies. More complex RL versions assume that animals build and store an explicit model of the world in memory. To apply these approaches to explain animal behavior, typical neuroscientific RL models make implicit assumptions about how real animals represent the passage of time. In this perspective, I explicitly list these assumptions and show that they have several problematic implications. I hope that the explicit discussion of these problems encourages the field to seriously examine the assumptions underlying timing and reinforcement learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"136 5","pages":"383-391"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561011/pdf/nihms-1825994.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1037/bne0000516","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Animals routinely learn to associate environmental stimuli and self-generated actions with their outcomes such as rewards. One of the most popular theoretical models of such learning is the reinforcement learning (RL) framework. The simplest form of RL, model-free RL, is widely applied to explain animal behavior in numerous neuroscientific studies. More complex RL versions assume that animals build and store an explicit model of the world in memory. To apply these approaches to explain animal behavior, typical neuroscientific RL models make implicit assumptions about how real animals represent the passage of time. In this perspective, I explicitly list these assumptions and show that they have several problematic implications. I hope that the explicit discussion of these problems encourages the field to seriously examine the assumptions underlying timing and reinforcement learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

在联想学习过程中,真实的动物是如何解释时间的流逝的?
动物通常会学会将环境刺激和自我产生的行为与其结果(如奖励)联系起来。强化学习(RL)框架是这种学习最流行的理论模型之一。RL的最简单形式,无模型RL,在许多神经科学研究中被广泛应用于解释动物行为。更复杂的RL版本假设动物在记忆中构建并存储一个明确的世界模型。为了应用这些方法来解释动物的行为,典型的神经科学RL模型对真实动物如何代表时间的流逝做出了隐含的假设。从这个角度来看,我明确列出了这些假设,并表明它们有几个问题。我希望对这些问题的明确讨论能鼓励该领域认真研究时间和强化学习的基本假设。(PsycInfo数据库记录(c)2022 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Behavioral neuroscience
Behavioral neuroscience 医学-行为科学
CiteScore
3.40
自引率
0.00%
发文量
51
审稿时长
6-12 weeks
期刊介绍: Behavioral Neuroscience publishes original research articles as well as reviews in the broad field of the neural bases of behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信