Spatial distribution and speciation of mercury in a recovering deepwater redfish (Sebastes mentella) population from St. Lawrence Estuary and Gulf, Canada.
Fella Moualek, Dominic Belanger, Mathieu Babin, Geneviève J Parent, Dominic E Ponton, Marc Amyot, Caroline Senay, Dominique Robert, Zhe Lu
{"title":"Spatial distribution and speciation of mercury in a recovering deepwater redfish (Sebastes mentella) population from St. Lawrence Estuary and Gulf, Canada.","authors":"Fella Moualek, Dominic Belanger, Mathieu Babin, Geneviève J Parent, Dominic E Ponton, Marc Amyot, Caroline Senay, Dominique Robert, Zhe Lu","doi":"10.1016/j.envpol.2023.122604","DOIUrl":null,"url":null,"abstract":"<p><p>Mercury (Hg) pollution poses a significant threat to the environment, particularly in the form of methylmercury (MeHg). However, little is known about the distribution and influencing factors of Hg in deep-sea (>200m) fish, which is crucial for assessing potential health risks to fish and humans. In Canada, the deepwater redfish (Sebastes mentella) has been designated as an endangered species. After a 25-year fishing moratorium, the redfish population in the St. Lawrence Estuary and Gulf is recovering, and resuming of commercial fishing and human consumption are expected. This study aimed to investigate the distribution of MeHg and total Hg (THg) in the muscle of redfish, as well as the factors influencing its distribution, and to assess the potential human health risks associated with redfish consumption. The redfish samples (n = 123) were collected by Fisheries and Oceans Canada in 2019. The concentrations of THg and MeHg in redfish muscle were determined to be 93.3 ± 183 ng/g (mean ± SD, wet weight) and 78.2 ± 149 ng/g, respectively. Large redfish (>30 cm) accumulated 20 to 30 times more Hg than small redfish (17-30 cm). Small redfish from the Estuary-Western Gulf had higher levels of MeHg and THg than those from the Laurentian Channel and the Northeast Gulf, but the Hg availability to redfish among the three areas were similar. Significant predictors of MeHg concentrations in redfish muscle were determined to be fish length, muscle moisture, δ<sup>15</sup>N, and N%. MeHg consumption by the general population with an average fish consumption rate is not anticipated to have adverse effects. This study establishes a baseline for future Hg monitoring in the deep water environments in this region. Further research is required to elucidate the cause-effect relationships between various environmental/biological parameters and Hg accumulation in deep-sea biota.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"337 ","pages":"122604"},"PeriodicalIF":7.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2023.122604","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mercury (Hg) pollution poses a significant threat to the environment, particularly in the form of methylmercury (MeHg). However, little is known about the distribution and influencing factors of Hg in deep-sea (>200m) fish, which is crucial for assessing potential health risks to fish and humans. In Canada, the deepwater redfish (Sebastes mentella) has been designated as an endangered species. After a 25-year fishing moratorium, the redfish population in the St. Lawrence Estuary and Gulf is recovering, and resuming of commercial fishing and human consumption are expected. This study aimed to investigate the distribution of MeHg and total Hg (THg) in the muscle of redfish, as well as the factors influencing its distribution, and to assess the potential human health risks associated with redfish consumption. The redfish samples (n = 123) were collected by Fisheries and Oceans Canada in 2019. The concentrations of THg and MeHg in redfish muscle were determined to be 93.3 ± 183 ng/g (mean ± SD, wet weight) and 78.2 ± 149 ng/g, respectively. Large redfish (>30 cm) accumulated 20 to 30 times more Hg than small redfish (17-30 cm). Small redfish from the Estuary-Western Gulf had higher levels of MeHg and THg than those from the Laurentian Channel and the Northeast Gulf, but the Hg availability to redfish among the three areas were similar. Significant predictors of MeHg concentrations in redfish muscle were determined to be fish length, muscle moisture, δ15N, and N%. MeHg consumption by the general population with an average fish consumption rate is not anticipated to have adverse effects. This study establishes a baseline for future Hg monitoring in the deep water environments in this region. Further research is required to elucidate the cause-effect relationships between various environmental/biological parameters and Hg accumulation in deep-sea biota.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.