Jesica A. Escobar, Ana Gabriela Gallardo-Hernandez, Marcos Angel Gonzalez-Olvera, Cristina Revilla-Monsalve, Debbie Hernandez, Ron Leder
{"title":"High order sliding mode control for restoration of a population of predators in a Lotka-Volterra system","authors":"Jesica A. Escobar, Ana Gabriela Gallardo-Hernandez, Marcos Angel Gonzalez-Olvera, Cristina Revilla-Monsalve, Debbie Hernandez, Ron Leder","doi":"10.1007/s10867-023-09643-1","DOIUrl":null,"url":null,"abstract":"<div><p>Human-induced extinction and rapid ecological changes require the development of techniques that can help avoid extinction of endangered species. The most used strategy to avoid extinction is reintroduction of the endangered species, but only 31% of these attempts are successful and they require up to 15 years for their results to be evaluated. In this research, we propose a novel strategy that improves the chances of survival of endangered predators, like lynx, by controlling only the availability of prey. To simulate the prey-predator relationship we used a Lotka-Volterra model to analyze the effects of varying prey availability on the size of the predator population. We calculate the number of prey necessary to support the predator population using a high-order sliding mode control (HOSMC) that maintains the predator population at the desired level. In the wild, nature introduces significant and complex uncertainties that affect species’ survival. This complexity suggests that HOSMC is a good choice of controller because it is robust to variability and does not require prior knowledge of system parameters. These parameters can also be time varying. The output measurement required by the HOSMC is the number of predators. It can be obtained using continuous monitoring of environmental DNA that measures the number of lynxes and prey in a specific geographic area. The controller efficiency in the presence of these parametric uncertainties was demonstrated with a numerical simulation, where random perturbations were forced in all four model parameters at each simulation step, and the controller provides the specific prey input that will maintain the predator population. The simulation demonstrates how HOSMC can increase and maintain an endangered population (lynx) in just 21–26 months by regulating the food supply (hares), with an acceptable maximal steady-state error of 3%.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"49 4","pages":"509 - 520"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-023-09643-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-023-09643-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Human-induced extinction and rapid ecological changes require the development of techniques that can help avoid extinction of endangered species. The most used strategy to avoid extinction is reintroduction of the endangered species, but only 31% of these attempts are successful and they require up to 15 years for their results to be evaluated. In this research, we propose a novel strategy that improves the chances of survival of endangered predators, like lynx, by controlling only the availability of prey. To simulate the prey-predator relationship we used a Lotka-Volterra model to analyze the effects of varying prey availability on the size of the predator population. We calculate the number of prey necessary to support the predator population using a high-order sliding mode control (HOSMC) that maintains the predator population at the desired level. In the wild, nature introduces significant and complex uncertainties that affect species’ survival. This complexity suggests that HOSMC is a good choice of controller because it is robust to variability and does not require prior knowledge of system parameters. These parameters can also be time varying. The output measurement required by the HOSMC is the number of predators. It can be obtained using continuous monitoring of environmental DNA that measures the number of lynxes and prey in a specific geographic area. The controller efficiency in the presence of these parametric uncertainties was demonstrated with a numerical simulation, where random perturbations were forced in all four model parameters at each simulation step, and the controller provides the specific prey input that will maintain the predator population. The simulation demonstrates how HOSMC can increase and maintain an endangered population (lynx) in just 21–26 months by regulating the food supply (hares), with an acceptable maximal steady-state error of 3%.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.