Heat-induced hormesis in longevity is linked to heat-stress sensitivity across laboratory populations from diverse altitude of origin in Drosophila buzzatii.
Mariano Almirón, Federico H Gomez, Pablo Sambucetti, Fabian M Norry
{"title":"Heat-induced hormesis in longevity is linked to heat-stress sensitivity across laboratory populations from diverse altitude of origin in Drosophila buzzatii.","authors":"Mariano Almirón, Federico H Gomez, Pablo Sambucetti, Fabian M Norry","doi":"10.1007/s10522-023-10066-7","DOIUrl":null,"url":null,"abstract":"<p><p>Heat-induced hormesis in longevity is the increase in life span resulting from the previous exposure to a mild heat stress early in life. Here we examined heat-induced hormesis of Drosophila buzzatii in five mass-mating populations, which were derived from five wild populations along an elevation gradient from 202 to 1855 m above sea level in North-Western Argentina. Five day old flies were exposed to 37.5 °C for 90 min to induce hormesis and its possible variation across altitudinal populations. This heat treatment strongly extended longevity in lowland-derived flies from the most heat-resistant population only. Both heat-induced effects on longevity and heat-knockdown time (heat-stress sensitivity) were negatively correlated to altitude of population of origin. Hormesis was positively correlated to heat-knockdown time across populations. These results indicate that variation in heat-induced hormesis can not be considered as independent of heat-stress sensitivity (or heat-knockdown time) in populations of insects.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"183-190"},"PeriodicalIF":4.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-023-10066-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heat-induced hormesis in longevity is the increase in life span resulting from the previous exposure to a mild heat stress early in life. Here we examined heat-induced hormesis of Drosophila buzzatii in five mass-mating populations, which were derived from five wild populations along an elevation gradient from 202 to 1855 m above sea level in North-Western Argentina. Five day old flies were exposed to 37.5 °C for 90 min to induce hormesis and its possible variation across altitudinal populations. This heat treatment strongly extended longevity in lowland-derived flies from the most heat-resistant population only. Both heat-induced effects on longevity and heat-knockdown time (heat-stress sensitivity) were negatively correlated to altitude of population of origin. Hormesis was positively correlated to heat-knockdown time across populations. These results indicate that variation in heat-induced hormesis can not be considered as independent of heat-stress sensitivity (or heat-knockdown time) in populations of insects.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.