Abigail García‑Morales, Nancy O. Pulido, Daniel Balleza
{"title":"Relation between flexibility and intrinsically disorder regions in thermosensitive TRP channels reveal allosteric effects","authors":"Abigail García‑Morales, Nancy O. Pulido, Daniel Balleza","doi":"10.1007/s00249-023-01682-9","DOIUrl":null,"url":null,"abstract":"<div><p>How a protein propagates the conformational changes throughout its structure remains largely unknown. In thermosensitive TRP channels, this allosteric communication is triggered by ligand interaction or in response to temperature changes. Because dynamic allostery suggests a dynamic role of disordered regions, in this work we set out to thoroughly evaluate these regions in six thermosensitive TRP channels. Thus, by contrasting the intrinsic flexibility of the transmembrane region as a function of the degree of disorder in those proteins, we discovered several residues that do not show a direct correlation in both parameters. This kind of structural discrepancy revealed residues that are either reported to be dynamic, functionally relevant or are involved in signal propagation and probably part of allosteric networks. These discrepant, potentially dynamic regions are not exclusive of TRP channels, as this same correlation was found in the Kv Shaker channel.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 1-2","pages":"77 - 90"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01682-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
How a protein propagates the conformational changes throughout its structure remains largely unknown. In thermosensitive TRP channels, this allosteric communication is triggered by ligand interaction or in response to temperature changes. Because dynamic allostery suggests a dynamic role of disordered regions, in this work we set out to thoroughly evaluate these regions in six thermosensitive TRP channels. Thus, by contrasting the intrinsic flexibility of the transmembrane region as a function of the degree of disorder in those proteins, we discovered several residues that do not show a direct correlation in both parameters. This kind of structural discrepancy revealed residues that are either reported to be dynamic, functionally relevant or are involved in signal propagation and probably part of allosteric networks. These discrepant, potentially dynamic regions are not exclusive of TRP channels, as this same correlation was found in the Kv Shaker channel.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.