Jing Liu, Yan Ding, Xinqi Yu, Shuhong Ye, Pengfei Guo, Biying Yang
{"title":"Fabric Fiber as a Biofilm Carrier for Halomonas sp. H09 Mixed with Lactobacillus rhamnosus GG","authors":"Jing Liu, Yan Ding, Xinqi Yu, Shuhong Ye, Pengfei Guo, Biying Yang","doi":"10.1007/s12010-023-04728-y","DOIUrl":null,"url":null,"abstract":"<div><p>Biofilm bacteria have stronger resistance to the adverse external environment compared to planktonic bacteria, and biofilms of non-pathogenic bacteria have strong potential for applications in food. In this experiment, <i>Halomonas</i> sp. H09 and <i>Lactobacillus rhamnosus</i> GG, which have film-forming ability in monoculture and better film-forming ability in mixed culture than the two strains alone, were selected as the target strains for mixed culture. According to SEM observation and bacterial dry weight measurement, the target strain formed a dense biofilm on a 0.1 g/L chitosan-modified cellulose III carrier. Furthermore, the presence of extracellular polymeric substances in biofilms was verified by EDS and FTIR. The results showed that 0.1 g/L chitosan-modified cellulose III was an ideal carrier material for immobilization of <i>Halomonas</i> sp. H09 with <i>Lactobacillus rhamnosus</i> GG biofilm. This research provided a basis for the selection of non-pathogenic mixed-bacteria biofilm carriers.</p></div>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":"196 7","pages":"3974 - 3991"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12010-023-04728-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biofilm bacteria have stronger resistance to the adverse external environment compared to planktonic bacteria, and biofilms of non-pathogenic bacteria have strong potential for applications in food. In this experiment, Halomonas sp. H09 and Lactobacillus rhamnosus GG, which have film-forming ability in monoculture and better film-forming ability in mixed culture than the two strains alone, were selected as the target strains for mixed culture. According to SEM observation and bacterial dry weight measurement, the target strain formed a dense biofilm on a 0.1 g/L chitosan-modified cellulose III carrier. Furthermore, the presence of extracellular polymeric substances in biofilms was verified by EDS and FTIR. The results showed that 0.1 g/L chitosan-modified cellulose III was an ideal carrier material for immobilization of Halomonas sp. H09 with Lactobacillus rhamnosus GG biofilm. This research provided a basis for the selection of non-pathogenic mixed-bacteria biofilm carriers.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.