Brian K. McFarlin , Elizabeth A. Bridgeman , Jakob L. Vingren , David W. Hill
{"title":"Dry blood spot samples to monitor immune-associated mRNA expression in intervention studies: Impact of Baker’s yeast beta glucan","authors":"Brian K. McFarlin , Elizabeth A. Bridgeman , Jakob L. Vingren , David W. Hill","doi":"10.1016/j.ymeth.2023.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring immunological response to physical stressors in a field setting is challenging because existing methods require a laboratory visit and traditional blood collection via venipuncture. The purpose of this study was to determine if our optimized dry blood spot (DBS) methodology yields sufficient total RNA to quantify the effect of Baker’s Yeast Beta Glucan supplementation (BYBG; Wellmune; 250 mg/d) on post-exercise mRNA expression. Participants had venous DBS samples collected prior to (PRE), and immediately (POST), 2 (2H), and 4 (4H) hrs after completion of a 90 min run/walk trial in a hot, humid environment. Total RNA extracted from DBS was analyzed using a 574-plex Human Immunology mRNA panel (Nanostring). BYBG supplementation was associated with the increased expression of 12 mRNAs (LTB4R, PML, PRFM1, TNFRSF14, LCK, MYD88, STAT3, CCR1, TNFSF10, LILRB3, MME, and STAT6) and decreased expression of 4 mRNAs (MAP4K1, IKBKG, CD5, and IL4R) across all post-exercise time points. In addition to individually changed mRNA targets, we found eleven immune-response pathways that were significantly enriched by BYBG following exercise (TNF Family signaling, immunometabolism, oxidative stress, toll-like receptor (TLR) signaling, Treg differentiation, autophagy, chemokine signaling, complement system, Th2 differentiation, cytokine signaling, and innate immune). The present approach showed that DBS samples can be used to yield useful information about mRNA biomarkers in an intervention study. We have found that BYBG supplementation induces changes at the mRNA level that support the immune system and reduce susceptibility to opportunistic infection (i.e., upper respiratory tract infection) and facilitate improved physical recovery from exercise. Future studies may look to use DBS sampling for testing other nutritional, health, or medical interventions.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"219 ","pages":"Pages 39-47"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1046202323001603/pdfft?md5=d597bb6b7fb261adb15c8c1dbf34b421&pid=1-s2.0-S1046202323001603-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202323001603","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring immunological response to physical stressors in a field setting is challenging because existing methods require a laboratory visit and traditional blood collection via venipuncture. The purpose of this study was to determine if our optimized dry blood spot (DBS) methodology yields sufficient total RNA to quantify the effect of Baker’s Yeast Beta Glucan supplementation (BYBG; Wellmune; 250 mg/d) on post-exercise mRNA expression. Participants had venous DBS samples collected prior to (PRE), and immediately (POST), 2 (2H), and 4 (4H) hrs after completion of a 90 min run/walk trial in a hot, humid environment. Total RNA extracted from DBS was analyzed using a 574-plex Human Immunology mRNA panel (Nanostring). BYBG supplementation was associated with the increased expression of 12 mRNAs (LTB4R, PML, PRFM1, TNFRSF14, LCK, MYD88, STAT3, CCR1, TNFSF10, LILRB3, MME, and STAT6) and decreased expression of 4 mRNAs (MAP4K1, IKBKG, CD5, and IL4R) across all post-exercise time points. In addition to individually changed mRNA targets, we found eleven immune-response pathways that were significantly enriched by BYBG following exercise (TNF Family signaling, immunometabolism, oxidative stress, toll-like receptor (TLR) signaling, Treg differentiation, autophagy, chemokine signaling, complement system, Th2 differentiation, cytokine signaling, and innate immune). The present approach showed that DBS samples can be used to yield useful information about mRNA biomarkers in an intervention study. We have found that BYBG supplementation induces changes at the mRNA level that support the immune system and reduce susceptibility to opportunistic infection (i.e., upper respiratory tract infection) and facilitate improved physical recovery from exercise. Future studies may look to use DBS sampling for testing other nutritional, health, or medical interventions.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.