A New Truncated Lindley-Generated Family of Distributions: Properties, Regression Analysis, and Applications.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2023-09-20 DOI:10.3390/e25091359
Mohamed Hussein, Gabriela M Rodrigues, Edwin M M Ortega, Roberto Vila, Howaida Elsayed
{"title":"A New Truncated Lindley-Generated Family of Distributions: Properties, Regression Analysis, and Applications.","authors":"Mohamed Hussein,&nbsp;Gabriela M Rodrigues,&nbsp;Edwin M M Ortega,&nbsp;Roberto Vila,&nbsp;Howaida Elsayed","doi":"10.3390/e25091359","DOIUrl":null,"url":null,"abstract":"<p><p>We present the truncated Lindley-<i>G</i> (TLG) model, a novel class of probability distributions with an additional shape parameter, by composing a unit distribution called the truncated Lindley distribution with a parent distribution function G(x). The proposed model's characteristics including critical points, moments, generating function, quantile function, mean deviations, and entropy are discussed. Also, we introduce a regression model based on the truncated Lindley-Weibull distribution considering two systematic components. The model parameters are estimated using the maximum likelihood method. In order to investigate the behavior of the estimators, some simulations are run for various parameter settings, censoring percentages, and sample sizes. Four real datasets are used to demonstrate the new model's potential.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25091359","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present the truncated Lindley-G (TLG) model, a novel class of probability distributions with an additional shape parameter, by composing a unit distribution called the truncated Lindley distribution with a parent distribution function G(x). The proposed model's characteristics including critical points, moments, generating function, quantile function, mean deviations, and entropy are discussed. Also, we introduce a regression model based on the truncated Lindley-Weibull distribution considering two systematic components. The model parameters are estimated using the maximum likelihood method. In order to investigate the behavior of the estimators, some simulations are run for various parameter settings, censoring percentages, and sample sizes. Four real datasets are used to demonstrate the new model's potential.

Abstract Image

Abstract Image

Abstract Image

一个新的截断Lindley生成分布族:性质、回归分析和应用。
我们提出了截断Lindley-G(TLG)模型,这是一类具有附加形状参数的新型概率分布,通过将一个称为截断Lindley分布的单位分布与父分布函数G(x)组合而成。讨论了该模型的特征,包括临界点、矩、生成函数、分位数函数、平均偏差和熵。此外,我们还引入了一个基于截断Lindley-Weibull分布的回归模型,该模型考虑了两个系统分量。使用最大似然法来估计模型参数。为了研究估计器的行为,对各种参数设置、截尾百分比和样本大小进行了一些模拟。使用四个真实数据集来展示新模型的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信